Transductions and Variants of Twin-Width

Édouard Bonnet Yeonsu Chang Julien Duron <u>Colin Geniet</u> O-joung Kwon

DIMAG, IBS

FMT 2025

Twin-width

Twin-width is a 'graph complexity parameter':

tww : Graphs $\rightarrow \mathbb{N}$.

Theorem (BKTW '20)

There is an algorithm which given

- a graph G with n vertices,
- a witness that $tww(G) \leq d$, and
- a first-order formula ϕ

tests if $G \models \phi$ in time $f(\phi, d) \cdot n$.

Twin-width

Twin-width is a 'graph complexity parameter':

tww : Graphs $\rightarrow \mathbb{N}$.

Theorem (BKTW '20)

There is an algorithm which given

- a graph G with n vertices,
- a witness that $tww(G) \leq d$, and
- a first-order formula ϕ

tests if $G \models \phi$ in time $f(\phi, d) \cdot n$.

Theorem (BKTW '20)

For any first-order transduction Φ , there is a function f such that

 $\mathsf{tww}(\Phi(G)) \leq f(\mathsf{tww}(G)).$

Theorem (BKTW '20)

For any first-order transduction Φ , there is a function f such that

 $\mathsf{tww}(\Phi(G)) \leq f(\mathsf{tww}(G)).$

This talk:

simple presentation of the proof, working for variants of twin-width.

Ingredients:

- (standard) Gaifman's locality
- 'rank-twin-width'
- flips

Definition

Contraction sequence: $\mathcal{P}_n, \ldots, \mathcal{P}_1$ partitions of V(G).

- $\mathcal{P}_n = \{\{v\} : v \in V(G)\}$ partition into singletons
- $\mathcal{P}_1 = \{V(G)\}$ trivial partition
- \mathcal{P}_i is obtained by merging two parts of \mathcal{P}_{i+1} .

$$\mathcal{P}$$
 partition of $V(G) \longrightarrow \text{set } \mathcal{R}_{\mathcal{P}} \subseteq \begin{pmatrix} \mathcal{P} \\ 2 \end{pmatrix}$ of *red edges*

 $XY \in \mathbb{R}_{\mathcal{P}}$ when $X, Y \in \mathcal{P}$ are not *homogeneous*, i.e. there is both an edge and a non-edge between them.

$$\mathcal{P}$$
 partition of $V(G) \longrightarrow \text{set } \mathcal{R}_{\mathcal{P}} \subseteq \begin{pmatrix} \mathcal{P} \\ 2 \end{pmatrix}$ of *red edges*

 $XY \in \mathbb{R}_{\mathcal{P}}$ when $X, Y \in \mathcal{P}$ are not *homogeneous*, i.e. there is both an edge and a non-edge between them.

'cost' of $\mathcal{P} = \Delta(R_{\mathcal{P}})$ (maximum degree in the 'red' graph $(\mathcal{P}, R_{\mathcal{P}})$)

$$\mathcal{P}$$
 partition of $V(G) \longrightarrow \text{set } \mathcal{R}_{\mathcal{P}} \subseteq \begin{pmatrix} \mathcal{P} \\ 2 \end{pmatrix}$ of *red edges*

 $XY \in \mathbb{R}_{\mathcal{P}}$ when $X, Y \in \mathcal{P}$ are not *homogeneous*, i.e. there is both an edge and a non-edge between them.

'cost' of $\mathcal{P} = \Delta(R_{\mathcal{P}})$ (maximum degree in the 'red' graph $(\mathcal{P}, R_{\mathcal{P}})$) 'cost' of the contraction sequence $\mathcal{P}_n, \ldots, \mathcal{P}_1 = \max_i \Delta(R_{\mathcal{P}_i})$ tww(G) = minimum cost of a contraction sequence.

Strategy

Transduction: for $\phi(x, y)$ a first-order formula,

$$\phi(G) \coloneqq (V(G), \{xy : G \models \phi(x, y)\}).$$

Theorem

$$\mathsf{tww}(\phi(G)) \leq f(\mathsf{tww}(G)).$$

Strategy: given $\mathcal{P}_n, \ldots, \mathcal{P}_1$ contraction sequence, show

$$\operatorname{cost} \operatorname{of} \mathcal{P}_i \operatorname{in} \phi(G) \leq f(\operatorname{cost} \operatorname{of} \mathcal{P}_i \operatorname{in} G).$$

...almost!

We will need to adjust the definition of twin-width.

Theorem (Gaifman)

For any FO formula $\phi(x, y)$, there are $r, k \in \mathbb{N}$ such that any graph G has a colouring $\lambda : V(G) \to \{1, \ldots, k\}$ so that if $d_G(u, v) > r$, then $\phi(x, y)$ only depends on $\lambda(u), \lambda(v)$. The radius r only depends on the quantifier rank of ϕ .

A = P and $B = N_{black}(P)$ is a biclique

A = P and $B = N_{black}(P)$ is a biclique

- Remove the biclique *AB*.
- Add unary predicates to G to mark A and B.
- In ϕ , replace E(x, y) by $E(x, y) \lor (x \in A \land y \in B)$.

This increases the number k of colours given by Gaifman's theorem, but not the radius r!

Repeat for each part $Q \in B^r_{\mathcal{R}_\mathcal{P}}(\mathcal{P})$ (bounded number)

By Gaifman's theorem, for $x \in P$, $y \notin B_{R_p}^r(P)$, $\phi(x, y)$ only depends on the colours of x and y.

So we obtain:

Fact

In $\phi(G)$, the adjacency matrix of P versus $V \setminus B_{R_P}^r(P)$ has bounded rank.

Summary:

Given $\mathcal{P}_n, \ldots, \mathcal{P}_1$ contraction sequence for G and R_n, \ldots, R_1 the corresponding red edges

We define (with r = Gaifman radius of ϕ)

$$R'_i = \{PQ : d_{R_i}(P,Q) \leq r\}.$$

- Degree is still bounded: $\Delta(R'_i) \leq (\Delta(R_i))^r$
- In $\phi(G)$ we proved that for all $P \in \mathcal{P}_i$, the rank of P versus $V \setminus N_{R'_i}[P]$ in $\phi(G)$ is bounded

The rank of P versus $V \setminus N_{R'_i}[P]$ is at most k

The rank of P versus $V \setminus N_{R'_i}[P]$ is at most k

Ignoring $N_{R'_i}(P)$, split P into neighbourhood types P_1, \ldots, P_{2^k}

The rank of P versus $V \setminus N_{R'_i}[P]$ is at most k

Ignoring $N_{R'_i}(P)$, split P into neighbourhood types P_1, \ldots, P_{2^k}

Repeat for all parts of \mathcal{P}_i : parts non-adjacent in R'_i are now fully adjacent or non-adjacent

The rank of P versus $V \setminus N_{R'_i}[P]$ is at most k

Ignoring $N_{R'_i}(P)$, split P into neighbourhood types P_1, \ldots, P_{2^k}

Repeat for all parts of \mathcal{P}_i : parts non-adjacent in R'_i are now fully adjacent or non-adjacent

Variants of twin-width

Consider any graph parameter $\mathfrak{p} : Graphs \to \mathbb{N}$. 'reduced- \mathfrak{p} ' is defined like twin-width, replacing

the red graphs R_i have bounded degree

by

the red graphs R_i have bounded degree and bounded p

Variants of twin-width

Consider any graph parameter $\mathfrak{p} : Graphs \to \mathbb{N}$. 'reduced- \mathfrak{p} ' is defined like twin-width, replacing

the red graphs R_i have bounded degree

by

the red graphs R_i have bounded degree and bounded p

Theorem

If having bounded \mathfrak{p} is preserved by taking subgraphs, bounded powers, and bounded blowups, then having bounded reduced- \mathfrak{p} is preserved by FO transductions.

Variants of twin-width

Consider any graph parameter $\mathfrak{p} : Graphs \to \mathbb{N}$. 'reduced- \mathfrak{p} ' is defined like twin-width, replacing

the red graphs R_i have bounded degree

by

the red graphs R_i have bounded degree and bounded p

Theorem

If having bounded p is preserved by FO transductions between bounded degree graphs, then having bounded reduced-p is preserved by FO transductions.

This works for \mathfrak{p} being tree-width, path-width, band-width, ...