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Erdős Pósa property
Cycle packing cp(G):
maximum size of a collection of vertex-disjoint
cycles in G.

Feedback-vertex-set fvs(G):
minimum number of vertices required to
intersect all cycles of G.

Theorem (Erdős–Pósa)

fvs(G) ≤ f (cp(G)) with f (k) = O(k log k)

A graph with cp(G) bounded is a tree plus a bounded number of vertices.
⇒ algorithmically simple graphs
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Odd cycles packing

Odd cycle packing ocp(G): same with only odd cycles.

Theorem (Fiorini, Joret, Weltge, Yuditsky, ’21)
In graphs with ocp(G) ≤ k, maximum independent set can be solved in polynomial time.

Induced odd cycle packing iocp(G): only consider packings of non-adjacent odd cycles.

Theorem (Bonamy et al., ’18)
For graphs with iocp(G) bounded, VC-dimension bounded, and linear size independent sets,
there is an EPTAS for maximum independent set.

Applications to disk and unit ball graphs.
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Induced cycle packing

Induced cycle packing icp(G):
maximum number of vertex-disjoint and non-adjacent cycles in G.

We study the class of graphs with icp(G) ≤ k (k constant).
Problems:

Testing icp(G) ≤ k
Algorithms in this class for independent set, …

Question
Does icp(G) ≤ k imply fvs(G) ≤ f (k)?

No: cliques have icp(Kt) = 1 but fvs(Kt) = t − 2.
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Induced cycle packing

Induced cycle packing icp(G):
maximum number of vertex-disjoint and non-adjacent cycles in G.

We study the class of graphs with icp(G) ≤ k (k constant).
Problems:

Testing icp(G) ≤ k
Algorithms in this class for independent set, …

Question
Does icp(G) ≤ k and no Kt,t subgraph imply fvs(G) ≤ f (k, t)?

Still no!
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icp(G) = 1 and FVS unbounded.

12 23 33 34 44 44 44 4
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Feedback vertex set is logarithmic

Theorem
If G is a graph with icp(G) ≤ k and without Kt,t subgraph, then

fvs(G) ≤ f (k, t) · log n

Some problems with algorithms in time 2O(tw(G)) · poly(n):
Maximum independent set
3-coloring
Hamiltonian cycle
…
Testing icp(G) ≤ k [Mi. Pilipczuk, ’22]

When fvs(G) is logarithmic in n, these algorithms are polynomial.
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Solving Maximum Independent Set

F

F feedback vertex set of size O(log n).

We construct I independent.
For each v ∈ F , branch on v :

either pick v ∈ I, and delete N[v ],
or v 6∈ I, and delete v .

After this, only a forest is left ⇒ pick leafs greedily.

Branching is polynomial because F is logarithmic.
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Solving MIS in the dense case

Theorem
For any fixed k, Maximum Independent Set can be solved in quasipolynomial
time nO(log n) on graphs with icp(G) ≤ k.

C v

Let S the set of cycles with length 4.

Fix C ∈ S. All cycles are adjacent to C .
Thus some v ∈ C is adjacent to 1/4 of the cycles of S.

Branch on v :
Take v and delete N(v) ⇒ destroys 1/4 cycles in S,
Delete v ⇒ destroys C

This kind of branching is quasipolynomial.

When S = ∅, we are in the K2,2-free case.
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Back to the main theorem
Theorem
If G is a graph with icp(G) ≤ k and without Kt,t subgraph, then fvs(G) ≤ f (k, t) · log n.

C

N

R

S

Pick C cycle with minimal length.
Let N its neighbourhood, R = G \ (C ∪ N),
and S the second neighbourhood of C .

C is the only cycle in G[C ∪ N ∪ S],
otherwise C would not be minimal
⇒ average degree ≤ 2.

G[R ] is disjoint from C , so icp(G[R ]) ≤ k − 1.
⇒ average degree ≤ 2k by induction.
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Summary

For graphs with icp(G) ≤ k and no Kt,t subgraph: (sparse setting)
Feedback vertex set is logarithmic + tight up to the constant.

Polynomial algorithm for independent set, and many other problems.
Polynomial algorithm to compute icp(G).

For graphs with icp(G) ≤ k: (dense setting)
Quasi-polynomial algorithms for independent set and 3-coloring.

Related result:

Theorem (Nguyen, Scott, Seymour + Le, ’22)
In graphs with icp(G) ≤ k, there are at most |V (G)|f (k) induced paths.

Implies a polynomial algorithm to test icp(G) ≤ k.
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Open Questions

In the dense settings, can quasi-polynomial algorithms be improved to be polynomial?
Any FPT algorithms with icp(G) as parameter?
What about restricting packing of specific types of cycles?
(E.g., packing nonadjacent induced cycles of length ≥ 4.)

Thank you!
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