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Glueing

Identify two graphs on some partial isomorphism:

7→

Inverse of splitting on a separator.

Theorem (Chudnovsky, Penev, Scott, Trotignon, ’11)
If C is χ-bounded, then the closure of C under glueing on ≤ k
vertices is also χ-bounded.
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Substitution

Replace a vertex with a graph, making it a module:

7→

Theorem (Chudnovsky, Penev, Scott, Trotignon, ’11)
If C is (polynomially) χ-bounded, then the closure of C under
substitution is also (polynomially) χ-bounded.
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Glueing and Substitution

Question (Chudnovsky, Penev, Scott, Trotignon, ’11)
If C is χ-bounded, is the closure of C under both substitution and
glueing on ≤ k vertices also χ-bounded?

Very special case:
Let C be the class obtained, starting with an edge, by
I making non-adjacent twins (= substitution by a stable set of

size 2),
I and glueing on 2 non-ajacent vertices,

C is triangle free. Is it χ-bounded?

Remark
I C is closed under induced subgraphs
I C does not contain the cube

3 / 6



Glueing and Substitution

Question (Chudnovsky, Penev, Scott, Trotignon, ’11)
If C is χ-bounded, is the closure of C under both substitution and
glueing on ≤ k vertices also χ-bounded?

Very special case:
Let C be the class obtained, starting with an edge, by
I making non-adjacent twins (= substitution by a stable set of

size 2),
I and glueing on 2 non-ajacent vertices,

C is triangle free. Is it χ-bounded?

Remark
I C is closed under induced subgraphs
I C does not contain the cube

3 / 6



Glueing and Substitution

Question (Chudnovsky, Penev, Scott, Trotignon, ’11)
If C is χ-bounded, is the closure of C under both substitution and
glueing on ≤ k vertices also χ-bounded?

Very special case:
Let C be the class obtained, starting with an edge, by
I making non-adjacent twins (= substitution by a stable set of

size 2),
I and glueing on 2 non-ajacent vertices,

C is triangle free. Is it χ-bounded?

Remark
I C is closed under induced subgraphs
I C does not contain the cube

3 / 6



Zykov graphs

Zk : add a vertex adjacent to each transversal of Z1, . . . ,Zk−1

Z1 Z2 Z3 Z4

Zykov graphs induce all bipartite graphs.
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Twincut graphs

T1 T2 2× T3 10× T4
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Bad orientation

· · · · · · · · ·

k(k + 1)× ~Zk

k + 1 vertices per transversal

· · ·
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