Graph parameters and Groups

Colin Geniet based on work with Édouard Bonnet, Romain Tessera, Stéphan Thomassé

32 KIAS Combinatorics Workshop

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 めへで

Groups

A group Γ has:

- \blacktriangleright an associative product $a \cdot b$
- \blacktriangleright a neutral element 1_{Γ}
- ▶ inverses a^{-1}

Groups

A group Γ has: but sometime it is written with addition!

- an associative product $a \cdot b (a + b)$
- ► a neutral element 1_{Γ} (0_{Γ})
- ▶ inverses a^{-1} (-a)

Groups

A group Γ has: but sometime it is written with addition!

- an associative product $a \cdot b (a + b)$
- ► a neutral element 1_{Γ} (0_{Γ})
- ▶ inverses a^{-1} (-a)

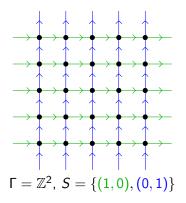
My groups usually are:

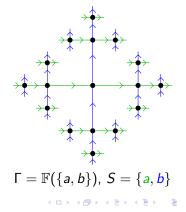
- non-commutative,
- infinite,
- but with a finite generating set.

Going back to graphs

For Γ a group, $S\subset \Gamma$ a finite generating set. Cayley graph Cay($\Gamma,S)$:

• edges
$$E = \{(x, x \cdot s) \mid x \in \Gamma, s \in S\}$$
.





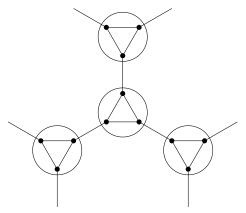
Graph G with finite tree-width: partition \mathcal{P} of V(G) where

- G/P is a tree
- \blacktriangleright parts of ${\cal P}$ have bounded size

only correct for bounded degree!

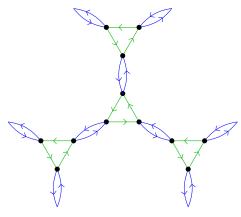
Graph G with finite tree-width: partition \mathcal{P} of V(G) where

- G/\mathcal{P} is a tree
- \blacktriangleright parts of ${\cal P}$ have bounded size



Graph G with finite tree-width: partition \mathcal{P} of V(G) where

- ▶ G/P is a tree
- \blacktriangleright parts of ${\cal P}$ have bounded size



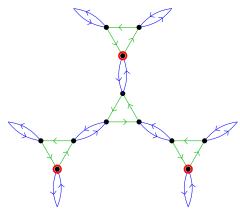
Generators a, bsatisfying $a^3 = 1, b^2 = 1$

(This is called $\mathrm{PSL}_2(\mathbb{Z})$)

ヘロト 人間 ト 人 ヨト 人 ヨトー

Graph G with finite tree-width: partition \mathcal{P} of V(G) where

- G/\mathcal{P} is a tree
- \blacktriangleright parts of ${\cal P}$ have bounded size



Group Γ virtually free: subgroup Λ where

- Λ is free
- $[\Gamma : \Lambda] := |\Gamma/\Lambda|$ is finite

Generators a, bsatisfying $a^3 = 1, b^2 = 1$

(This is called $PSL_2(\mathbb{Z})$)

Graph G with finite tree-width: partition \mathcal{P} of V(G) where

- G/P is a tree
- parts of \mathcal{P} have bounded size

Group Γ virtually free: subgroup Λ where

- Λ is free
- $[\Gamma : \Lambda] := |\Gamma/\Lambda|$ is finite

Theorem (Kuske & Lohrey, '05)

For any group Γ and finite generating set S, Cay(Γ , S) has finite tree-width if and only if Γ is virtually free.

Graph G with finite tree-width: partition \mathcal{P} of V(G) where

- G/\mathcal{P} is a tree
- parts of \mathcal{P} have bounded size

Group Γ virtually free: subgroup Λ where

- Λ is free
- $[\Gamma : \Lambda] := |\Gamma/\Lambda|$ is finite

Theorem (Kuske & Lohrey, '05)

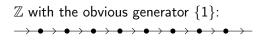
For any group Γ and finite generating set S, Cay(Γ , S) has finite tree-width if and only if Γ is virtually free.

Remark

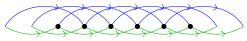
In particular: for any finite generating sets S, S', $Cay(\Gamma, S)$ has finite tree-width if and only if $Cay(\Gamma, S')$ does.

```
So many Cayley graphs...
```

A single group can have several Cayley graphs.



 \mathbb{Z} with stupid generators $\{2, 3\}$:



But they are all the same!

If G is a graph, the power $G^{(k)}$ has

- ▶ same vertex set V(G)
- an edge xy whenever $d_G(x, y) \leq k$.

But they are all the same!

If G is a graph, the power $G^{(k)}$ has

- ► same vertex set V(G)
- an edge xy whenever $d_G(x, y) \leq k$.

Lemma

For any finite generating sets S_1, S_2 of G, there exists $c \in \mathbb{N}$,

$$Cay(G, S_1) \subset (Cay(G, S_2))^{(c)}.$$

Geometers say: all Cayley graphs are quasi-isometric.

For bounded degree graphs,

G has finite tree-width $\iff G^{(k)}$ has finite tree-width.

So if any Cayley graph of Γ has finite tree-width, then all of them have finite tree-width.

(For bounded degree graphs, finite tree-width is a quasi-isometric invariant.)

Tree-width of Cayley graphs is well understood.

Theorem (Kuske & Lohrey, '05)

 $Cay(\Gamma, S)$ has finite tree-width if and only if Γ is virtually free.

Which graph parameters can we look at next? It would be nice if they were stable under taking powers $G^{(k)}$

Tree-width of Cayley graphs is well understood.

Theorem (Kuske & Lohrey, '05)

 $Cay(\Gamma, S)$ has finite tree-width if and only if Γ is virtually free.

Which graph parameters can we look at next? It would be nice if they were stable under taking powers $G^{(k)}$

clique-width?

Tree-width of Cayley graphs is well understood.

Theorem (Kuske & Lohrey, '05)

 $Cay(\Gamma, S)$ has finite tree-width if and only if Γ is virtually free.

Which graph parameters can we look at next? It would be nice if they were stable under taking powers $G^{(k)}$

clique-width?

For sparse graphs, clique-width = tree-width!

Tree-width of Cayley graphs is well understood.

Theorem (Kuske & Lohrey, '05)

 $Cay(\Gamma, S)$ has finite tree-width if and only if Γ is virtually free.

Which graph parameters can we look at next? It would be nice if they were stable under taking powers $G^{(k)}$

clique-width?

For sparse graphs, clique-width = tree-width!

▶ Hadwiger's number (max size of K_t-minor)?

Tree-width of Cayley graphs is well understood.

Theorem (Kuske & Lohrey, '05)

 $Cay(\Gamma, S)$ has finite tree-width if and only if Γ is virtually free.

Which graph parameters can we look at next? It would be nice if they were stable under taking powers $G^{(k)}$

clique-width?

For sparse graphs, clique-width = tree-width!

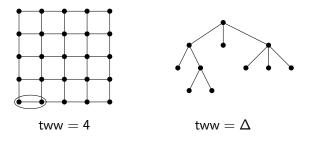
Hadwiger's number (max size of K_t-minor)? Not stable under powers: if G is the infinite grid, G is planar, but G⁽²⁾ contains K_∞ as minor!

(ロ) (四) (三) (三) (三) (三)

Twin-width:

- pick two vertices (can be non-adjacent) and contract them
- repeat until there is only one vertex left
- cost of the contraction sequence = max degree
- tww(G) = min cost of a contraction sequence

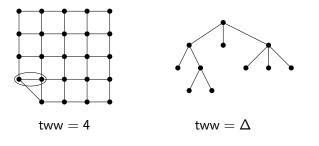
(This definition only works for bounded degree)



Twin-width:

- pick two vertices (can be non-adjacent) and contract them
- repeat until there is only one vertex left
- cost of the contraction sequence = max degree
- tww(G) = min cost of a contraction sequence

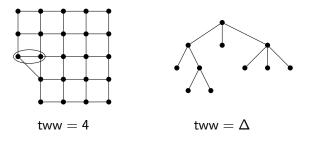
(This definition only works for bounded degree)



Twin-width:

- pick two vertices (can be non-adjacent) and contract them
- repeat until there is only one vertex left
- cost of the contraction sequence = max degree
- tww(G) = min cost of a contraction sequence

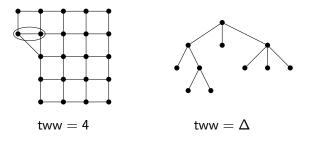
(This definition only works for bounded degree)



Twin-width:

- pick two vertices (can be non-adjacent) and contract them
- repeat until there is only one vertex left
- cost of the contraction sequence = max degree
- tww(G) = min cost of a contraction sequence

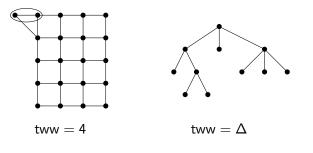
(This definition only works for bounded degree)



Twin-width:

- pick two vertices (can be non-adjacent) and contract them
- repeat until there is only one vertex left
- cost of the contraction sequence = max degree
- tww(G) = min cost of a contraction sequence

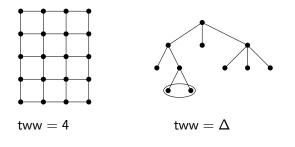
(This definition only works for bounded degree)



Twin-width:

- pick two vertices (can be non-adjacent) and contract them
- repeat until there is only one vertex left
- cost of the contraction sequence = max degree
- tww(G) = min cost of a contraction sequence

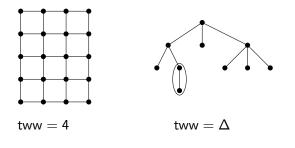
(This definition only works for bounded degree)



Twin-width:

- pick two vertices (can be non-adjacent) and contract them
- repeat until there is only one vertex left
- cost of the contraction sequence = max degree
- tww(G) = min cost of a contraction sequence

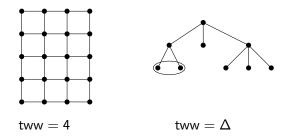
(This definition only works for bounded degree)



Twin-width:

- pick two vertices (can be non-adjacent) and contract them
- repeat until there is only one vertex left
- cost of the contraction sequence = max degree
- tww(G) = min cost of a contraction sequence

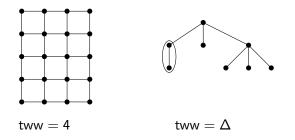
(This definition only works for bounded degree)



Twin-width:

- pick two vertices (can be non-adjacent) and contract them
- repeat until there is only one vertex left
- cost of the contraction sequence = max degree
- tww(G) = min cost of a contraction sequence

(This definition only works for bounded degree)



Twin-width and quasi-isometries

Equivalent definition of twin-width:

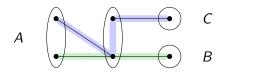
- Start with the partition into singletons
 P = {{x} : x ∈ V(G)}
- \blacktriangleright merge two parts of ${\cal P}$
- repeat until everything is merged
- cost of the merge sequence = max degree in G/P
- ▶ tww(G) = min cost of a merge sequence

Twin-width and quasi-isometries

Equivalent definition of twin-width:

- ▶ start with the partition into singletons $\mathcal{P} = \{\{x\} : x \in V(G)\}$
- \blacktriangleright merge two parts of ${\cal P}$
- repeat until everything is merged
- cost of the merge sequence = max degree in G/P
- ▶ tww(G) = min cost of a merge sequence

For \mathcal{P} partition of V(G), $G^{(k)}/\mathcal{P} \subseteq (G/\mathcal{P})^{(k)}$.



k = 2

イロン イボン イヨン イヨン 三日

Thus tww($G^{(k)}$) \leq tww(G)^k

Summarizing:

Lemma

For any finite generating sets S_1, S_2 of Γ ,

```
\mathsf{tww}(\mathit{Cay}(\Gamma, \mathit{S}_1)) < \infty \iff \mathsf{tww}(\mathit{Cay}(\Gamma, \mathit{S}_2)) < \infty.
```

Summarizing:

Lemma

For any finite generating sets S_1, S_2 of Γ ,

```
\mathsf{tww}(\mathit{Cay}(\Gamma, \mathit{S}_1)) < \infty \iff \mathsf{tww}(\mathit{Cay}(\Gamma, \mathit{S}_2)) < \infty.
```

Examples of groups with finite twin-width:

Summarizing:

Lemma

For any finite generating sets S_1, S_2 of Γ ,

 $\mathsf{tww}(\mathit{Cay}(\Gamma, \mathit{S}_1)) < \infty \iff \mathsf{tww}(\mathit{Cay}(\Gamma, \mathit{S}_2)) < \infty.$

Examples of groups with finite twin-width:

• free group $\mathbb{F}(a, b)$

Summarizing:

Lemma

For any finite generating sets S_1, S_2 of Γ ,

 $\mathsf{tww}(\mathit{Cay}(\Gamma, \mathit{S}_1)) < \infty \iff \mathsf{tww}(\mathit{Cay}(\Gamma, \mathit{S}_2)) < \infty.$

Examples of groups with finite twin-width:

▶ free group 𝔽(a, b)

▶ all commutative groups (cartesian products of \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$)

Summarizing:

Lemma

For any finite generating sets S_1, S_2 of Γ ,

 $\mathsf{tww}(\mathit{Cay}(\Gamma, \mathit{S}_1)) < \infty \iff \mathsf{tww}(\mathit{Cay}(\Gamma, \mathit{S}_2)) < \infty.$

Examples of groups with finite twin-width:

- ► Z²
- free group $\mathbb{F}(a, b)$
- ▶ all commutative groups (cartesian products of \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$)
- all hyperbolic groups (contained in cartesian products of trees)

Problem:

bounded degree graphs with infinite twin-width exist, but we don't know how to construct them!

Problem:

bounded degree graphs with infinite twin-width exist, but we don't know how to construct them!

Theorem (Bonnet, G., Eun-Jung Kim, Thomassé, Watrigant)

 $\#\{\text{graphs with } n \text{ vertices and } tww = k\} \le k^n$

Problem:

bounded degree graphs with infinite twin-width exist, but we don't know how to construct them!

Theorem (Bonnet, G., Eun-Jung Kim, Thomassé, Watrigant)

 $\#\{\text{graphs with } n \text{ vertices and } tww = k\} \leq k^n$

The number of 3-regular graphs on *n* vertices is $\sim (n/2)!$ Asymptotically, $(n/2)! \gg c^n$ for any constant *c*

Theorem (Osajda '20)

Let $(G_n)_{n \in N}$ be a sequence of finite graphs with

- bounded degree,
- bounded diam (G_n) /girth (G_n) ratio,
- and girth $(G_{n+1}) \ge girth(G_n) + 6$.

Then $(G_n)_{n \in \mathbb{N}}$ embeds isometrically into some Cayley graph.

Theorem (Osajda '20)

Let $(G_n)_{n \in N}$ be a sequence of finite graphs with

- bounded degree,
- bounded diam (G_n) /girth (G_n) ratio,
- and girth $(G_{n+1}) \ge girth(G_n) + 6$.

Then $(G_n)_{n \in \mathbb{N}}$ embeds isometrically into some Cayley graph.

Sketch:

▶ $\forall k$, almost all bounded degree graphs have tww > k

Theorem (Osajda '20)

Let $(G_n)_{n \in N}$ be a sequence of finite graphs with

- bounded degree,
- bounded diam (G_n) /girth (G_n) ratio,
- and girth $(G_{n+1}) \ge girth(G_n) + 6$.

Then $(G_n)_{n \in \mathbb{N}}$ embeds isometrically into some Cayley graph.

Sketch:

- ▶ $\forall k$, almost all bounded degree graphs have tww > k
- A non-neglectable proportion of bounded degree graphs satisfy the conditions of the theorem

Theorem (Osajda '20)

Let $(G_n)_{n \in N}$ be a sequence of finite graphs with

- bounded degree,
- bounded diam (G_n) /girth (G_n) ratio,
- and girth $(G_{n+1}) \ge girth(G_n) + 6$.

Then $(G_n)_{n \in \mathbb{N}}$ embeds isometrically into some Cayley graph.

Sketch:

- ▶ $\forall k$, almost all bounded degree graphs have tww > k
- A non-neglectable proportion of bounded degree graphs satisfy the conditions of the theorem
- ► ⇒ There is a sequence of graphs with unbounded twin-width satisfying the conditions

Theorem (Osajda '20)

Let $(G_n)_{n \in N}$ be a sequence of finite graphs with

- bounded degree,
- bounded diam (G_n) /girth (G_n) ratio,
- and girth $(G_{n+1}) \ge girth(G_n) + 6$.

Then $(G_n)_{n \in \mathbb{N}}$ embeds isometrically into some Cayley graph.

Sketch:

- ▶ $\forall k$, almost all bounded degree graphs have tww > k
- A non-neglectable proportion of bounded degree graphs satisfy the conditions of the theorem
- ► ⇒ There is a sequence of graphs with unbounded twin-width satisfying the conditions
- \blacktriangleright \Rightarrow The theorem gives a group with infinite twin-width

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ うらう

More groups with finite twin-width!

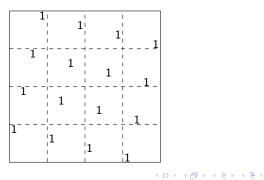
Cayley graphs / contraction sequences are not that convenient to prove finite twin-width...

More groups with finite twin-width!

Cayley graphs / contraction sequences are not that convenient to prove finite twin-width...

Theorem (Bonnet, Eun-Jung Kim, Thomassé, Watrigant '20)

G a bounded degree graph. tww(*G*) is bounded iff there is an ordering of V(G) where the adjacency matrix has no k-grid as submatrix for some *k*.



Who cares about graphs?

 Γ a group, S a finite generating set Pick an ordering < of Γ

Who cares about graphs?

 Γ a group, S a finite generating set Pick an ordering < of Γ Each $s \in S$ gives a permutations $x \mapsto xs$ of $(\Gamma, <)$ Write its permutation matrix $M_s^{<}$:

- \blacktriangleright rows and columns are Γ ordered by <
- '1' at position (x, xs) for all x

Who cares about graphs?

 Γ a group, S a finite generating set Pick an ordering < of Γ Each $s \in S$ gives a permutations $x \mapsto xs$ of $(\Gamma, <)$ Write its permutation matrix $M_s^{<}$:

- \blacktriangleright rows and columns are Γ ordered by <
- '1' at position (x, xs) for all x

Lemma

The following are equivalent:

►
$$\forall s \in S$$
, $\exists k$, $M_s^<$ has no k-grid

►
$$\forall x \in \Gamma$$
, $\exists k$, $M_x^<$ has no k-grid

Sketch: the matrix of $Cay(\Gamma, S)$ is $\bigcup_{s \in S} M_s^{<}$.

Ordered groups

An ordering < of Γ is right invariant if $\forall x, y, z \in \Gamma$

 $x < y \iff xz < yz$

Ordered groups

An ordering < of Γ is <u>right invariant</u> if $\forall x, y, z \in \Gamma$

 $x < y \iff xz < yz$

Examples:

- ▶ natural order on Z is invariant
- ▶ lexicographic order on Zⁿ is invariant
- the free group $\mathbb{F}(a, b)$ has an invariant order

Non-examples:

- cyclic groups $\mathbb{Z}/n\mathbb{Z}$ is not orderable
- there exist non-orderable groups which do not contain any Z/nZ

(日)(四)((日)(日)(日)(日)

Ordered groups

An ordering < of Γ is right-invariant if $\forall x, y, z \in \Gamma$

 $x < y \iff xz < yz$

Lemma

Any orderable group has finite twin-width.

Take < right-invariant ordering of Γ For any $s \in \Gamma$, $x \mapsto xs$ is an increasing map, so $M_s^<$ has no 2-grid.

Uniform twin-width

Summary: Γ has finite twin-width \iff there exists an ordering < of Γ , $\forall x \in \Gamma$, $\exists k$, $M_x^{<}$ has no k-grid

Uniform twin-width

Summary: Γ has finite twin-width \iff there exists an ordering < of Γ , $\forall x \in \Gamma$, $\exists k$, $M_x^{<}$ has no k-grid

Definition

Γ has uniform twin-width k if there exists an ordering < of Γ, $\forall x \in \overline{\Gamma}, M_x^{<}$ has no k-grid

Summary: Γ has finite twin-width \iff there exists an ordering < of Γ , $\forall x \in \Gamma$, $\exists k$, $M_x^{<}$ has no k-grid

Definition

Γ has uniform twin-width k if there exists an ordering < of Γ, $\forall x \in \overline{\Gamma}, M_x^{<}$ has no k-grid

Recall the previous example: Take < right-invariant ordering of Γ For any $s \in \Gamma$, $x \mapsto xs$ is an increasing map, so $M_s^<$ has no 2-grid. \Rightarrow orderable groups have uniform twin-width 2 Uniform twin-width is very nice to construct groups of finite twin-width! For example:

Lemma (group extension)

Let H be a (normal) subgroup of G. If H and G/H have uniform twin-width k, then so does G.

This gives <u>a lot</u> of finite twin-width groups: for instance solvable groups (= constructed starting from commutative groups by extensions)

Explicitly construct groups with infinite twin-width (hard)? With infinite uniform twin-width?

- Explicitly construct groups with infinite twin-width (hard)? With infinite uniform twin-width?
- ► Are finite twin-width and finite uniform twin-width equivalent? Conjecture: the group of finitely supported permutations on Z has infinite uniform twin-width, but finite twin-width.

- Explicitly construct groups with infinite twin-width (hard)? With infinite uniform twin-width?
- ► Are finite twin-width and finite uniform twin-width equivalent? Conjecture: the group of finitely supported permutations on Z has infinite uniform twin-width, but finite twin-width.

- Explicitly construct groups with infinite twin-width (hard)? With infinite uniform twin-width?
- ► Are finite twin-width and finite uniform twin-width equivalent? Conjecture: the group of finitely supported permutations on Z has infinite uniform twin-width, but finite twin-width.

Thank you!