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Groups

A group Γ has:

but sometime it is written with addition!

▶ an associative product a · b

(a+ b)

▶ a neutral element 1Γ

(0Γ)

▶ inverses a−1

(−a)

My groups usually are:
▶ non-commutative,
▶ infinite,
▶ but with a finite generating set.
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Going back to graphs

For Γ a group, S ⊂ Γ a finite generating set.
Cayley graph Cay(Γ,S):
▶ vertices V = Γ,
▶ edges E = {(x , x · s) | x ∈ Γ, s ∈ S}.

Γ = Z2, S = {(1, 0), (0, 1)} Γ = F({a, b}), S = {a, b}
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Tree-width and groups
Graph G with finite tree-width:
partition P of V (G ) where
▶ G/P is a tree
▶ parts of P have bounded size

only correct for bounded degree!

Group Γ virtually free:
subgroup Λ where
▶ Λ is free
▶ [Γ : Λ] := |Γ/Λ| is finite
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Generators a, b
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partition P of V (G ) where
▶ G/P is a tree
▶ parts of P have bounded size

Group Γ virtually free:
subgroup Λ where
▶ Λ is free
▶ [Γ : Λ] := |Γ/Λ| is finite

Theorem (Kuske & Lohrey, ’05)

For any group Γ and finite generating set S , Cay(Γ,S) has finite
tree-width if and only if Γ is virtually free.

Remark
In particular: for any finite generating sets S , S ′, Cay(Γ, S) has
finite tree-width if and only if Cay(Γ,S ′) does.
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So many Cayley graphs. . .

A single group can have several Cayley graphs.

Z with the obvious generator {1}:

Z with stupid generators {2, 3}:
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But they are all the same!

If G is a graph, the power G (k) has
▶ same vertex set V (G )

▶ an edge xy whenever dG (x , y) ≤ k .

P∞ P
(3)
∞

Lemma
For any finite generating sets S1,S2 of G , there exists c ∈ N,

Cay(G ,S1) ⊂
(
Cay(G ,S2)

)(c)
.

Geometers say: all Cayley graphs are quasi-isometric.
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Tree-width powers

For bounded degree graphs,

G has finite tree-width ⇐⇒ G (k) has finite tree-width.

So if any Cayley graph of Γ has finite tree-width,
then all of them have finite tree-width.

(For bounded degree graphs, finite tree-width is a quasi-isometric invariant.)
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What now?

Tree-width of Cayley graphs is well understood.

Theorem (Kuske & Lohrey, ’05)

Cay(Γ,S) has finite tree-width if and only if Γ is virtually free.

Which graph parameters can we look at next?
It would be nice if they were stable under taking powers G (k)

▶ clique-width?
For sparse graphs, clique-width = tree-width!

▶ Hadwiger’s number (max size of Kt-minor)?
Not stable under powers: if G is the infinite grid,
G is planar, but G (2) contains K∞ as minor!
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Twin-width

Twin-width:
▶ pick two vertices (can be non-adjacent) and contract them
▶ repeat until there is only one vertex left
▶ cost of the contraction sequence = max degree
▶ tww(G ) = min cost of a contraction sequence

(This definition only works for bounded degree)

tww = 4 tww = ∆
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Twin-width and quasi-isometries
Equivalent definition of twin-width:
▶ start with the partition into singletons

P = {{x} : x ∈ V (G )}
▶ merge two parts of P
▶ repeat until everything is merged
▶ cost of the merge sequence = max degree in G/P
▶ tww(G ) = min cost of a merge sequence

For P partition of V (G ), G (k)/P ⊆ (G/P)(k).

A

B

C

k = 2

Thus tww(G (k)) ≤ tww(G )k

9 / 19



Twin-width and quasi-isometries
Equivalent definition of twin-width:
▶ start with the partition into singletons

P = {{x} : x ∈ V (G )}
▶ merge two parts of P
▶ repeat until everything is merged
▶ cost of the merge sequence = max degree in G/P
▶ tww(G ) = min cost of a merge sequence

For P partition of V (G ), G (k)/P ⊆ (G/P)(k).

A

B

C

k = 2

Thus tww(G (k)) ≤ tww(G )k

9 / 19



Groups with finite twin-width

Summarizing:

Lemma
For any finite generating sets S1,S2 of Γ,

tww(Cay(Γ,S1)) < ∞ ⇐⇒ tww(Cay(Γ,S2)) < ∞.

Examples of groups with finite twin-width:

▶ Z2

▶ free group F(a, b)
▶ all commutative groups (cartesian products of Z and Z/nZ)
▶ all hyperbolic groups (contained in cartesian products of trees)
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Groups with infinite twin-width

Problem:
bounded degree graphs with infinite twin-width exist,
but we don’t know how to construct them!

Theorem (Bonnet, G., Eun-Jung Kim, Thomassé, Watrigant)

#{graphs with n vertices and tww = k} ≤ kn

The number of 3-regular graphs on n vertices is ∼ (n/2)!
Asymptotically, (n/2)! ≫ cn for any constant c
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Groups with infinite twin-width

Theorem (Osajda ’20)

Let (Gn)n∈N be a sequence of finite graphs with
▶ bounded degree,
▶ bounded diam(Gn)/ girth(Gn) ratio,
▶ and girth(Gn+1) ≥ girth(Gn) + 6.

Then (Gn)n∈N embeds isometrically into some Cayley graph.

Sketch:

▶ ∀k , almost all bounded degree graphs have tww > k

▶ A non-neglectable proportion of bounded degree graphs satisfy
the conditions of the theorem

▶ ⇒ There is a sequence of graphs with unbounded twin-width
satisfying the conditions

▶ ⇒ The theorem gives a group with infinite twin-width
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More groups with finite twin-width!
Cayley graphs / contraction sequences are not that convenient to
prove finite twin-width. . .

Theorem (Bonnet, Eun-Jung Kim, Thomassé, Watrigant ’20)

G a bounded degree graph. tww(G ) is bounded iff there is an
ordering of V (G ) where the adjacency matrix has no k-grid as
submatrix for some k .

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
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Who cares about graphs?

Γ a group, S a finite generating set
Pick an ordering < of Γ

Each s ∈ S gives a permutations x 7→ xs of (Γ, <)
Write its permutation matrix M<

s :
▶ rows and columns are Γ ordered by <

▶ ‘1’ at position (x , xs) for all x

Lemma
The following are equivalent:
▶ Cay(Γ, S) has finite twin-width
▶ ∀s ∈ S , ∃k , M<

s has no k-grid
▶ ∀x ∈ Γ, ∃k , M<

x has no k-grid

Sketch: the matrix of Cay(Γ,S) is
⋃

s∈S M
<
s .
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Ordered groups

An ordering < of Γ is right invariant if ∀x , y , z ∈ Γ

x < y ⇐⇒ xz < yz

Examples:
▶ natural order on Z is invariant
▶ lexicographic order on Zn is invariant
▶ the free group F(a, b) has an invariant order

Non-examples:
▶ cyclic groups Z/nZ is not orderable
▶ there exist non-orderable groups which do not contain

any Z/nZ

15 / 19



Ordered groups

An ordering < of Γ is right invariant if ∀x , y , z ∈ Γ

x < y ⇐⇒ xz < yz

Examples:
▶ natural order on Z is invariant
▶ lexicographic order on Zn is invariant
▶ the free group F(a, b) has an invariant order

Non-examples:
▶ cyclic groups Z/nZ is not orderable
▶ there exist non-orderable groups which do not contain

any Z/nZ

15 / 19



Ordered groups

An ordering < of Γ is right-invariant if ∀x , y , z ∈ Γ

x < y ⇐⇒ xz < yz

Lemma
Any orderable group has finite twin-width.

Take < right-invariant ordering of Γ
For any s ∈ Γ, x 7→ xs is an increasing map, so M<

s has no 2-grid.
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Uniform twin-width

Summary: Γ has finite twin-width ⇐⇒
there exists an ordering < of Γ, ∀x ∈ Γ, ∃k , M<

x has no k-grid

Definition
Γ has uniform twin-width k if there exists an ordering < of Γ,
∀x ∈ Γ, M<

x has no k-grid

Recall the previous example: Take < right-invariant ordering of Γ
For any s ∈ Γ, x 7→ xs is an increasing map, so M<

s has no 2-grid.
⇒ orderable groups have uniform twin-width 2
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Uniform twin-width

Uniform twin-width is very nice to construct groups of finite
twin-width! For example:

Lemma (group extension)

Let H be a (normal) subgroup of G . If H and G/H have uniform
twin-width k , then so does G .

This gives a lot of finite twin-width groups:
for instance solvable groups (= constructed starting from
commutative groups by extensions)
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Open problems

▶ Explicitly construct groups with infinite twin-width (hard)?
With infinite uniform twin-width?

▶ Are finite twin-width and finite uniform twin-width equivalent?
Conjecture: the group of finitely supported permutations on Z
has infinite uniform twin-width, but finite twin-width.

Thank you!
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