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Résumé

Un graphe est composé d’un ensemble de sommets reliés par des arêtes. Les
graphes sont des structures versatiles, couramment utilisées pour représenter
des réseaux de transports, de communication, ou d’individus. Cette versatilité
a un prix : beaucoup de problèmes naturels — e.g. trouver un nombre maxi-
mum de sommets non reliés — sont difficiles. Plutôt qu’essayer de les résoudre
en toute généralité, on peut se restreindre à des graphes satisfaisant certaines
conditions pouvant simplifier la tâche, comme par exemple les graphes pla-
naires, i.e. les graphes pouvant être dessinés sur le plan sans croisement.

C’est dans cet esprit que Bonnet, Kim, Thomassé et Watrigant ont introduit
en 2020 la twin-width, (lit. largeur de jumeaux ) inspirée par une notion de
largeur de permutations de Guillemot et Marx. Elle est définie par des suites
de contractions, au cours desquelles on fusionne des paires de sommets jusqu’à
avoir réduit le graphe à un seul sommet, tout en mesurant une notion d’erreurs.

De nombreuses classes de graphes sont de twin-width bornée : par exemple
les graphes planaires, ou plus généralement ceux évitant un mineur fixé, ainsi
que les graphes de tree-width ou clique-width bornée. Dans une telle classe C, les
suites de contractions ont des applications remarquables. On peut par exemple
les utiliser pour obtenir un algorithme efficace (au sens de la complexité paramé-
trée) pour tout problème exprimé en logique du premier ordre ; des résultats de
coloriage montrant que C est χ-bornée ; et une borne sur le nombre de graphes
d’une taille donnée dans C, qui est une petite classe. Mentionnons cependant
une limite de la notion : trouver rapidement de bonnes suites de contractions
est un problème ouvert en général, bien que des algorithmes soient connus pour
tous les exemples précédents de classes de twin-width bornée.

Après une présentation détaillée de ces notions et résultats connus ainsi
que des techniques impliquées, cette thèse s’intéresse à la question suivante :
les propriétés précédentes (algorithme pour les propriétés du premier ordre, co-
loriage, petitesse) sont elles exclusivement vérifiées par les classes de twin-width
bornée ? En général ce n’est pas le cas : pour les deux premières propriétés, les
graphes de degré borné sont un contre-exemple, et nous construisons une petite
classe de twin-width non bornée, en passant par les groupes et les graphes de
Cayley.

Néanmoins, on peut re-poser cette question pour d’autres structures que
les graphes. En effet la définition de twin-width s’adapte aisément à toute
structure composée de relations binaires. Ainsi, dans les graphes ordonnés (un
graphe muni d’un ordre total sur les sommets), Bonnet, Giocanti, Ossona de
Mendez, Simon, Thomassé et Toruńczyk ont montré que twin-width bornée,
petitesse, et résolution efficace de problèmes du premier ordre sont des condi-
tions équivalentes. De plus, la twin-width peut être rapidement approximée
dans ces structures. Nous généralisons ces résultats aux tournois (un ensemble
de sommets avec pour chaque paire un choix de direction, ou du “gagnant”).

Les permutations peuvent être vues comme un cas particulier de graphes
ordonnés. Si les graphes ordonnés en général se comportent bien vis à vis de
la twin-width, les permutations sont tout particulièrement intéressantes : dans
leurs travaux fondateurs, Guillemot et Marx montrent que pour les permuta-
tions, avoir twin-width bornée est équivalent à éviter un motif. Après avoir
reformulé quelques résultats classiques de combinatoire des permutations sous
l’angle de la twin-width, nous présenterons un résultat de décomposition : les
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permutations de twin-width bornée se factorisent en un nombre borné de per-
mutations dites séparables, qui sont les permutations de twin-width 0.

Nous terminons cette étude avec des structures pour lesquelles notre com-
préhension de la twin-width est bien moins complète : les graphes éparses et
les groupes. Deux définitions équivalentes de la twin-width des groupes sont
présentées, l’une passant par les graphes de Cayley, et l’autre se ramenant
aux permutations par les actions de groupes. Ces deux définitions permettent
de montrer que la twin-width des groupes est préservée par un grand nombre
d’opérations et constructions classiques. En revanche, montrer ne serait ce qu’il
existe des groupes de twin-width infinie est difficile. Nous le prouvons grâce à un
théorème d’Osajda, permettant de plonger une suite de graphes de degré borné
dans un groupe. Les groupes, comme les graphes de degré borné, se trouvent
ainsi dans une situation étonnante : on montre qu’il en existe de twin-width
infinie, sans savoir les expliciter. L’existence d’un groupe de twin-width infinie
nous permet de construire une petite classe avec twin-width non bornée.
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Summary

A graph consists of a set of vertices connected by edges. Graphs are versatile
structures, commonly used to represent networks of transportation, communic-
ation, or persons. This versatility has a cost: numerous natural algorithmic
problems on graphs are hard to solve, such as finding a largest set of pairwise
non-adjacent vertices. Rather than trying to solve such problems in full gener-
ality, one may constrain the input graphs to simplify the problem, for instance
by considering only planar graphs, i.e. the ones drawn in the plane with no
crossing edges.

This work studies such a constraint: twin-width, introduced in 2020 by Bon-
net, Kim, Thomassé, and Watrigant, and inspired by a width of permutations
defined by Guillemot and Marx. Twin-width is defined through contraction se-
quences, during which one identifies pairs of vertices until the graph is reduced
to a single vertex, while measuring some notion of errors.

Many well-known graph classes have bounded twin-width: for instance
planar graphs, or more generally graphs avoiding a fixed minor, as well as
graphs with bounded tree-width or clique-width. In such a class C, contraction
sequences have remarkable applications. Notably, they can be used to obtain an
efficient algorithm (in the sense of parameterized complexity) for any problem
expressed through first-order logic; graph colouring results which show that C
is χ-bounded ; and an upper bound on the number of graphs in C with a given
size: C is called small. Let us however mention a limitation: efficiently finding
good contraction sequences is an open problem in general, although it can be
done for all the aforementioned examples of graphs with bounded twin-width.

After an in-depth introduction of these notions, known results, and of the
techniques involved, this thesis considers the following question: are the pre-
vious properties (algorithm for first-order properties, colouring, smallness) ex-
clusive to classes with bounded twin-width? In general, this is not the case.
Indeed graphs with bounded degree are counterexamples for the first two prop-
erties, and we construct a small class with unbounded twin-width, using groups
and Cayley graphs.

Nonetheless, one may ask the same question for structures other than
graphs. Indeed twin-width easily extends to any structure consisting of bin-
ary relations. Thus, in ordered graphs (graphs with a total ordering of the
vertices), Bonnet, Giocanti, Ossona de Mendez, Simon, Thomassé, and Tor-
uńczyk proved that bounded twin-width, smallness, and efficient algorithms for
first-order properties are all equivalent. Further, twin-width can be efficiently
approximated in these structures. We extend these results to tournaments (a
set of vertices with, for each pair, the choice of a direction or ‘winner’).

Permutations can be seen as a special case of ordered graphs. While ordered
graphs in general are well-behaved for twin-width, permutations are particu-
larly interesting: in their founding work, Guillemot and Marx show that for
permutations, bounded twin-width is equivalent to avoiding a pattern. After
revisiting some classical results on permutations with the point of view of twin-
width, we present a decomposition result: permutations with bounded twin-
width factorise into bounded products of separable permutations, which are
the permutations with twin-width 0.

We conclude this work with structures where our understanding of twin-
width is far more limited: sparse graphs and groups. Two equivalent definitions
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of twin-width in groups are introduced, the first using Cayley graphs, and the
second using permutations and group actions. Using these two definitions, we
show that twin-width of groups is stable under a number of classical operations
and constructions. However, merely showing that groups with infinite twin-
width exist is difficult. We prove it using a theorem of Osjada, allowing to
embed sequences of bounded degree graphs into groups. Groups and bounded
degree graphs alike exhibit a peculiar situation: while it can be shown that
there exist some with infinite twin-width, no explicit construction is known.
The existence of a group with infinite twin-width allows us to construct a
small class with unbounded twin-width.
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HOW TO READ THIS THESIS

This work is divided in two parts and an introduction. The introduction
presents the context motivating twin-width: graph algorithms, parameterized
complexity, and the underlying question of what being simple or complex means
for graphs.

The first part, Chapters 2 to 4, is an in-depth introduction to twin-width.
It presents key properties of graphs with small twin-width related algorithms,
logic, colourings, encodings, and enumeration, as well as several examples of
classes of graphs with and without bounded twin-width. It is meant as a
first introduction to twin-width, and assume only general knowledge of graph
theory.

The second part, Chapters 5 to 7, builds upon the first half and present
some more involved results about twin-width, many of which involve struc-
tures others than graphs. These three chapters are mostly, but not entirely
independent of each other.

The glossary is meant as a reminder for the definitions used in this work,
with pointers to the full definition and context in the main text.

xv





Chapter 1

INTRODUCTION

A graph G consists of a set V (G) of vertices or abstract points, together with a
set E(G) of edges, i.e. pairs of vertices which can be understood as connections
between the vertices. Graphs are simple but extremely versatile structures:
they are commonly used to represent networks of connections (e.g. railways,
communication links, social connections, or bridges in Königsberg), or conflicts
between objects represented by vertices (e.g. interferences between radio sta-
tions, simultaneously live variables in a register allocation problem). One can
even argue that anything can be represented by graphs: the computer scientist
may notice that any relational database can be drawn as a graph whose vertices
are objects and tuples with edges representing membership; the mathematician
meanwhile will notice that models of set theory are infinite directed graphs,
vertices being sets and edges again representing membership.

Unfortunately, this versatility comes at the cost: one should expect objects
which can represent anything to be complex. This complexity takes various
aspects. Algorithmically, many natural problems on graphs cannot be solved
quickly; the ones which can, e.g. finding a shortest path, are the exception
rather than the rule. Mathematically, one can hardly hope to find any in-
teresting structure or description in arbitrary graphs. Let us illustrate this
situation through an algorithmic problem which is remarkably easy to state,
yet hard to solve: finding independent sets.

1.1 Graph algorithms and Independent Sets

In a graph G, a subset of vertices S ⊂ V (G) is called independent or stable
if there is no edge xy ∈ E(G) with x, y ∈ S (see Figure 1.1). The definition
is particularly natural if the edges of G are understood as conflicts between
vertices: an independent set is a conflict-free subset. The independent set
problem asks to find an independent set with as many vertices as possible in a
given graph G.

Figure 1.1: Example of independent set (filled vertices) in the Petersen graph.

1



2 CHAPTER 1. INTRODUCTION

Polynomial algorithms. What is meant by an efficient algorithm? The
simplest and most common requirement is a polynomial time algorithm, i.e.
one which runs in time bounded by some polynomial O(nc) of the input size n,
which for graphs means the number of vertices n = |V (G)|. The independent
set problem is NP-complete: it is in fact one of the oldest known NP-complete
problems, featured in Karp’s list in 1972 [66]. Thus a polynomial time al-
gorithm for independent set would imply that P = NP, considered an unlikely
answer to the famous P vs NP problem. This is a strong indication that inde-
pendent set can likely not be solved in polynomial time.

When interested in algorithms, knowing that a problem can likely not be
solved in polynomial time is hardly a satisfying answer: it is natural to wonder
if this NP-hard problem could nonetheless be solved efficiently, for relaxed
notions of ‘solving’ and ‘efficiently’.

Approximation algorithms. A very natural idea is to look not for the best
solution, but a good enough one: a solution close to the optimal. The vertex
cover problem is a good example. A set C ⊂ V (G) of vertices is called a vertex
cover if any edge in E(G) has an endpoint inside C. Remark that C is a vertex
cover if and only if its complement V (G) \ C is an independent set. It follows
that finding a smallest vertex cover is as hard as finding a largest independent
set: both problems are NP-complete. However, the following simple algorithm
will quickly find a vertex cover at most twice as large as the smallest one:
greedily pick a maximal matching M (a set of edges with no shared endpoints),
and take all endpoints of edges in M as a vertex cover. This is called a 2-
approximation algorithm, running in polynomial time.

Despite their link, remark that finding a 2-approximation for vertex cover
(one at most twice as large as the minimum) is a very different problem from
finding a 2-approximation for independent set (one at least half as large as the
maximum). And indeed, while the former can be done in polynomial time, the
latter is hard: unless P = NP, it is impossible to approximate independent set
up to any constant factor, or in fact up to a factor which is less than a polyno-
mial of the input size [87]. Thus for independent set, finding an approximate
solution is just as hard as finding the optimal one.

Parameterized complexity. An approximation algorithm accepts non op-
timal solutions. What about trade-offs on the complexity instead? Parameter-
ized complexity, pioneered by Downey and Fellows [38], allows the complexity
to depend on a parameter, for instance the size of the solution. Say we are
not looking for the largest independent set, but for one of a given size k. The
naive algorithm enumerating all subsets of size k runs in time roughly nk.
Even with small values of k, say 10, this quickly becomes prohibitively long
when n grows. Fixed parameterized tractable algorithms (FPT), the key notion
of parameterized complexity, require to decouple the dependencies in k and n:
an FPT algorithm is one running in time f(k) · nc for some constant c, and an
arbitrary computable function f—often the exponential 2k. Thus for fixed k
this is a polynomial algorithm. When k grows, the multiplicative constant in
this polynomial grows possibly very quickly, but the degree does not.

Vertex cover is again a good example. Suppose that we are looking for a
vertex cover C of size k in G. Pick any vertex v; there are two choices: either
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have v in C, or have all of its neighbours in C—as the edges incident to v
would be uncovered if we do neither. Then, for each of the two choices, repeat
the process. Note that at each choice, a vertex at least is added to C, thus if
no solution is found after k choices, one should simply give up: C is already
too large. Hence this process explores a tree of choices, with two possibilities
at each point, and stopping after k choices. There are 2k branches in this tree,
and the resulting algorithm runs in time 2k · n. The vertex cover problem is
therefore FPT.

For independent set however, the results are once again negative. Again,
despite the link between the two problems, an FPT algorithm for vertex cover
(which should be particularly fast when there is a small vertex cover, hence a
very large independent set) is very different from an FPT algorithm for inde-
pendent set (which needs to be fast when looking for small independent sets).
Independent set is known to be complete for the parameterized complexity
class W[1]. One may think of FPT vs W[1] as the parameterized complexity
analogue of P vs NP: independent set being W[1]-complete is a strong indica-
tion that it should not admit an FPT algorithm.

Restricted graphs. Independent set is thus a truly difficult problem for
which none of the previous approaches yields any kind of efficient algorithm.
It is unreasonable to try to solve it for all graphs, which naturally leads to
the next question: are there specific graphs for which independent set can be
solved quickly?

An extremely simple example is trees, i.e. connected graphs with no cycles.
In trees, a simple greedy algorithm finds a largest independent set S: pick a
leaf (vertex with only one neighbour), add it to S, remove its neighbour from
the graph, and repeat.

A more complex picture is found in planar graphs, that is graphs which can
be drawn on the plane without crossing edges: the independent set problem
is NP-complete [50], but it can be approximated. Euler’s formula implies that
a planar graph on n vertices contains an independent set S with n

6 vertices,
obtained by repetitively picking a vertex with no more than 5 neighbours and
deleting its neighbours (compare with the algorithm in trees). In a trivial
sense, this is a 6-approximation algorithm for independent set, and an FPT
algorithm can be obtained for similar reasons. More interestingly, independent
set in planar graphs admits polynomial time c-approximation algorithms for
any constant c > 1 [7]. This is called a polynomial time approximation scheme
(PTAS).

In both trees and planar graphs there always exist independent sets of size
linear in the number of vertices. Let us give an example in which this is not
the case. A cograph is a graph constructed starting from individual vertices by
two operations: the disjoint union of two graphs, and the complete union (i.e.
taking the disjoint union of graphs and adding all edges between them). For
example, edgeless graphs and cliques (graphs with all possible edges) are both
cographs. For both operations, one can easily find a maximum independent
set in the resulting graph given solutions in the two parts: suppose we have
maximum independent sets Si in Gi, i = 1, 2. Then S1 ∪ S2 is a maximum
independent set in the disjoint union of G1 and G2, while in the complete union,
whichever of S1 or S2 is largest will be a maximum independent set. Given a
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cograph G, it is also possible to reconstruct the sequence of operations which
built G. Applying the above to this sequence of operations yields a maximum
independent set in G in polynomial time.

1.2 Classes of graphs

The previous examples demonstrate how a problem which seems hopelessly
difficult when considering all graphs, may admit interesting algorithms when
restricting the graphs considered. Oftentimes, the question one should ask is
not is it possible to solve this efficiently? but rather for which graphs can this
problem be solved efficiently? In a sense, we want to classify graphs as either
simple or complex.

This phrasing is slightly misleading: it does not make sense to ask if e.g.
the independent set problem is hard for one specific graph G. Indeed nobody
would care for an algorithm designed only for G. Algorithms are designed for
classes of graphs, and for instance the independent set problem is simple in
the classes of trees, of cographs, of planar graphs, while it is hard in the class
of all graphs. The question we really mean to ask is for which classes of graphs
can this problem be solved efficiently?.

Here, a class of graphs simply means a collection of graphs closed under
isomorphism. Without additional restrictions, a class of graphs can be ex-
tremely complex to describe, as one may arbitrarily pick which graphs (up
to isomorphism) it contains. It is unreasonable to attempt to characterise all
classes of graphs in which e.g. the independent set problem is simple. Instead,
one will usually restrict their attention to classes of graphs with a coherence
condition: if G is in the class C, then any graph H contained in G should also
belong to C. For graphs, contained can have many different meanings. The
most common ones are the following.

subgraphs A subgraph in G is a graph obtained by removing any subset of
edges and vertices. Naturally, if a vertex v is removed, so should all edges
incident to v.

A class C of graphs closed under subgraphs—meaning that when G ∈ C,
any subgraph of G is also in C—is called monotone. For example, the
classes of forests (disjoint unions of trees) and of planar graphs are mono-
tone, but that of cographs is not: it contains all cliques Kn (n vertices all
pairwise connected), and any graph on n vertices is a subgraph of Kn.

induced subgraphs An induced subgraph of G is obtained by deleting ver-
tices from G, and removing only the edges incident to the deleted vertices.
That is, if X is the set of preserved vertices, then all edges of G with en-
dpoints in X are kept. This subgraph is said to be induced by X, and is
denoted by G[X].

A class closed under induced subgraphs is called hereditary. Since induced
subgraphs are a more restrictive notion than subgraphs, a class which is
monotone is also hereditary. Forests and planar graphs are hereditary
because monotone, and cographs are hereditary but not monotone.

minors A minor of G is obtained by deleting vertices and edges, and contract-
ing edges. Contracting an edge uv means merging the vertices u and v
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while preserving their edges: the vertex resulting from this merge will be
adjacent to some x if either u or v was adjacent to x.

Any minor closed class is also monotone. Forests and planar graphs are
examples of minor closed classes. The class of subcubic graphs, i.e. in
which the degree (number of neighbours) of each vertex is at most 3, is
a monotone class which is not minor closed.

We have thus three notions of stability under some containment relation for
graph classes: hereditary, monotone, and minor closed, from the weakest to
the strongest requirement.

Minor closed classes. Minor closed classes are well understood thanks
to the colossal work of Robertson and Seymour in the graph minors series.
A minor closed class C which does not contain all graphs must avoid some
graph H as minor, i.e. H is not a minor of any G ∈ C: indeed this holds for
any H ∈ C. Robertson and Seymour describe a structure in graphs avoiding
any fixed minor: they decompose into graphs which up to small errors can be
embedded in surfaces with fixed genus [84]. Thus in a very broad sense, classes
which avoid a minor behave like planar graphs, and enjoy many of their prop-
erties. In particular, the independent set problem, while NP-complete, admits
a PTAS and an FPT algorithm, and this generalises to a wide range of other
algorithmic problems. Thus any minor closed class other than the class of all
graphs is simple in a strong sense.

Monotone classes. The situation is more complex in monotone classes. Re-
garding independent sets, Ramsey’s theorem implies that in any graph G avoid-
ing H as subgraph, there is an independent set of size O(n

1
k ), with n, k the

number of vertices of G,H respectively. Thus for a fixed H, independent sets of
at least polynomial size can be found in graphs avoiding H as subgraph. Non-
etheless, a simple reduction shows that in for instance triangle-free graphs (i.e.
without K3 as subgraph), independent set is NP-hard to approximate within
any constant. Avoiding one fixed H as subgraph is not in general sufficient to
ensure that a class is simple.

A major advance in the understanding of monotone classes is the theory
of sparsity of Nešetřil and Ossona de Mendez [75]. Sparse is a broad term
referring to graphs with few edges, as opposed to dense graphs. It can have
many different meanings. Having bounded degree and avoiding a minor are
two incomparable and strong notions of sparsity. Generalising both, Nešetřil
and Ossona de Mendez defined nowhere dense classes. Grohe, Kreutzer, and
Siebertz proved that nowhere dense classes have FPT algorithm to solve any
problem described using first-order logic, i.e. with a logical formula quantifying
on vertices of the input graph. First-order logic allows to describe a broad
class of problems, including independent set. Conversely, a monotone class C
which is not nowhere dense can in a sense encode all graphs through some
first-order formula [1], a property called first-order independence. This implies
that first-order logic problems in C cannot be solved by an FPT algorithm [69]
(assuming that FPT ̸=W [1]).

Thus a monotone class C either is nowhere dense, which gives it sufficient
structure to solve first-order problems, or can encode all graphs, which implies
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that first-order problems are hard in C. This is precisely the kind of dichotomy
which we are interested in: for a fixed class of problems (first-order definable),
a structural notion (nowhere dense) characterises the classes of graphs in which
these problem can be efficiently solved.

Hereditary classes. Being far more general than monotone classes, the cur-
rent understanding of hereditary classes is limited. A question which has raised
significant work is the following. Given a graph H, one can consider the class
of H-free graphs (i.e. of graphs which do not contain H as induced subgraph),
which is by construction hereditary. For which H is there a polynomial al-
gorithm for independent set in H-free graphs? Using that independent set is
NP-hard in graphs with maximum degree 3 [50], one can show that H must be
restricted to very simple graphs: paths, subdivided claws (i.e. three paths shar-
ing an endpoint), and disjoint unions thereof. It is conjectured that when H
is such a graph, there is a polynomial algorithm for independent set in H-
free graphs. A quasi-polynomial approximation scheme is known [31], while
polynomial algorithms are only known for special cases of H [5, 71, 60, 24].

The former conjecture however only applies to classes defined by avoiding a
single induced subgraph H, and many interesting hereditary classes cannot be
described with a single, or even a finite list of induced subgraphs to avoid. For
instance chordal graphs are the graphs which do not contain a cycle Ck on k
vertices as induced subgraph for any k ⩾ 4. A maximum independent set can be
found in a chordal graph by repetitively picking a vertex whose neighbourhood
is a clique (which always exists in a chordal graph) and deleting its neighbours.
This is a generalisation of the algorithm on trees.

There is no conjectured characterisation of the hereditary classes in which
independent set has a polynomial algorithm. A bold conjecture was however
proposed for problems defined in first-order logic. Recall that in a monotone
class C, there is an FPT algorithm for first-order problems if and only if C cannot
encode all graphs through a first-order formula. It is conjectured that the same
also holds for hereditary classes [48]. For monotone classes, this equivalence
was established through a third, more structural condition: being nowhere
dense. A generalisation of nowhere dense would most likely be necessary to
extend the result to hereditary classes, and even with such a notion, finding
FPT algorithms for first-order problems may prove very difficult. We will see
a few examples of classes with such algorithms—in addition to nowhere dense
classes—in the remainder of this introduction and this work.

1.3 Complexity measures

The previous section made a case for trying to classify classes of graphs as
simple or complex, and not the graphs themselves: a single finite graph cannot
by itself be considered complex. On the other hand, it is reasonable to define
a gradual measure of the complexity of individual graphs, as a function from
graphs to numbers: the smaller the number, the simpler the graph. Such func-
tions, called graph complexity measure, or more colloquially width functions,
have become central in graph theory and parameterized algorithms.
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Tree-width. Undoubtably the most famous graph complexity measure is
tree-width. The notion was proposed independently by different authors around
1975, but its development came as part of the work on graph minors of Rober-
ston and Seymour [82]. The tree-width tw(G) indicates how close to a tree G
is. For instance, forests have tree-width 1. With regards to tree-width, a class
of graphs C is considered simple if it has bounded tree-width: there is some
constant c such that tw(G) ⩽ c for any G ∈ C.

Numerous problems, including independent set, can be solved in linear time
on bounded tree-width classes. Precisely, they have FPT algorithms with the
tree-width as parameter: for instance, a maximum independent set in G can
be found in time 2tw(G) · n. Notice here that the parameter in the complexity
is only the tree-width, and not the size of the desired independent set. This
extends to any problem described using a monadic second-order formula [32],
a logic far more expressive than first-order logic, allowing quantification on
subsets of vertices and edges. Notable such problems include finding proper
colourings (colourings of vertices with distinct colours on adjacent vertices) or
Hamiltonian cycles (a cycle going through all vertices).

The class of graphs with tree-width at most k is minor closed, hence avoids
some graphs as minor (e.g. Kk). There are however minor avoiding classes with
unbounded tree-width: for instance planar graphs. The grid minor theorem of
Robertson and Seymour proves that a class C has bounded tree-width if and
only if it avoids a planar graph as minor [83]. Thus for a minor-closed class C,
tree-width gives a second, stronger notion of simplicity: either C has bounded
tree-width, which makes it very simple (independent set is solved in linear
time), or C avoids a minor but contains all planar graphs, and is relatively
simple (independent set is NP-hard, but has a PTAS), or C is the very complex
class of all graphs.

Clique-width. Tree-width is a sparse graph notion: any dense graph has
large tree-width, for instance cliques have tw(Kn) = n. Results about tree-
width are thus of little use to dense graphs. Clique-width, attributed to Cour-
celle, Engelfriet, and Rozenberg [33], is a variant of tree-width which accom-
modates dense graphs. Whereas the tree-width tw(G) indicates whether G
resembles a tree, the clique-width cw(G) indicates how easily G can be en-
coded as a tree. For instance, cographs, which are easily encoded by the tree
of operations (disjoint and complete sum) used to construct them, have clique-
width at most 2.

Clique-width satisfies cw(G) ⩽ O(2tw(G)). Thus any class of graphs with
bounded tree-width also has bounded clique-width. Conversely, a class with
bounded clique-width which avoids some bipartite complete graph Kt,t as sub-
graph has bounded tree-width. In that sense, clique-width is the dense analogue
of tree-width.

With clique-width as parameter, there are FPT algorithms for all problems
expressed in a weaker variant of monadic second-order logic allowing quanti-
fication on subsets of vertices, but not subsets of edges. This still includes
independent set and colouring, but not Hamiltonian cycles.

Twin-width. This leads us to the main subject of this work: twin-width
is a graph complexity measure introduced by Bonnet, Kim, Thomassé, and
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Watrigant [19], based on a notion of Guillemot and Marx for permutations [61].
We will see that classes with bounded tree-width or clique-width have bounded
twin-width: indeed tww(G) ⩽ 2 cw(G). Twin-width however goes far further:
planar graphs, and more generally classes avoiding a minor have bounded twin-
width, but not bounded clique-width.

In a class C with bounded twin-width, there is an FPT algorithm for first-
order logic problems [19], comparable to the result known in nowhere dense
classes (note that nowhere dense and bounded twin-width are incomparable
conditions). This algorithm however has a limitation: it must be given a witness
of the twin-width of the input graph, and computing witnesses of twin-width
is a major open problem. For instance, independent sets of size k in graphs of
twin-width t can be found in time tO(k) · n when provided with a witness of
twin-width. Remark the difference in complexity with the tree-width algorithm:
both twin-width and the solution size are parameters in the complexity. One
cannot remove the dependency in k, since independent set can be NP-hard in
classes with bounded twin-width such as planar graphs.

1.4 Organisation of this thesis

This thesis is concerned with twin-width, its properties and characterisations,
and its relationship to some of the other notions presented in this introduction.
It is organised as follows.

The first half of this work presents properties and results on twin-width,
alongside examples of classes of graphs with bounded twin-width. Chapter 2
presents the definition of twin-width through contraction sequences, and uses
it to construct the previously mentioned FPT algorithm for independent set,
as well as results on graph colourings, and several simple examples of graphs
with or without bounded twin-width. Chapter 3 introduces a second charac-
terisation of graphs with bounded twin-width: their adjacency matrices, when
judiciously ordered, avoid some grid-like structures. This leads to a proof that
classes avoiding a minor have bounded twin-width, and to results on compact
representations and enumeration of graphs with small twin-width. Chapter 4
presents two major results relating twin-width and first-order logic, with an
extensive introduction of the logical notions involved. The results of these first
three chapters come primarily from the work of Bonnet, Kim, Thomassé, and
Watrigant which defined twin-width for graphs [19].

The latter half is motivated by the following question: can the previous
remarkable properties of twin-width—algorithms, enumeration, etc.—be char-
acterisations of twin-width? That is, are these properties satisfied exclusively
by classes with bounded twin-width? While this is not the case in general for
graphs, we will present examples in which such equivalences hold. In Chapter 5
presents such characterisations when extending twin-width to structures other
than graphs: ordered structures, tournaments, permutations. More generally,
twin-width is shown to be particularly useful and well behaved for these struc-
tures. Chapter 6 focuses further on permutations in particular: after revisit-
ing the results of Guillemot and Marx which predate the definition of twin-
width for graphs [61], we prove a factorisation theorem for permutations with
bounded twin-width. Chapter 7 generalises twin-width to yet another kind of
structures: infinite groups. After studying basic properties of twin-width for
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groups, it presents the highly non-trivial construction of a group with infinite
twin-width. This disproves a conjectured characterisation of twin-width, by
providing a class which has unbounded twin-width but is small, i.e. has few
graphs in some precise sense.





Chapter 2

CONTRACTION SEQUENCES

This chapter defines twin-width through contraction sequences, presenting a
number of simple examples, and some applications on contraction sequences:
dynamic programming algorithms, and graph colouring results. It is largely
based on the first paper on twin-width of Bonnet, Kim, Thomassé, and Wat-
rigant [19], and the followup work of the same with the author [14, 15].

2.1 Definitions

Consider a graph G = (V,E), and a partition P of its vertex set V . Given
distinct parts X,Y ∈ P, we distinguish three situations.

1. If all vertices of X are adjacent to all vertices of Y , then X,Y are said
to be complete to each other.

2. Symmetrically, if no vertex of X is adjacent to a vertex of Y , then X,Y
are said to be anticomplete.

In either of these first two cases, X and Y are also said to be homogeneous.

3. When X and Y are not homogeneous, meaning that there is at least one
edge and one non-edge them, we say that X and Y are in error.

These three situations are described in a quotient structure called a trigraph:
the trigraph Tri(G,P) has P for vertex set, and between two parts X,Y ∈ P,
there is (1) no edge if X,Y are anti-complete, (2) a normal edge if they are
complete, (3) and an error edge if they are non-homogeneous. Thus, a tri-
graph (V,E,R) is defined by a vertex set V , and two sets E,R of normal and
error edges respectively, so that (V,E) and (V,R) are two graphs, and E,R are
disjoint. By convention, normal edges are depicted in black, and error edges in
red. See Figure 2.1 for an example.

Figure 2.1: Example of a partition of a graph represented by circles, and the
associated trigraph in thick edges (black for normal edges, and red for error
edges).

11
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The point of this definition is that if the trigraph Tri(G,P) has few error
edges, (the meaning of ‘few’ will be clarified shortly) then it is a good abstrac-
tion of G. For instance, in the extreme case where Tri(G,P) contains no error
edge, the graph G is entirely described by Tri(G,P), and the restriction of G
to each part of P. More generally, if one wishes to describe G, it is sufficient
to give:

1. the trigraph Tri(G,P) itself, describing the large-scale structure of G,
2. for each part X ∈ P, the local induced subgraph G[X],
3. and for each non-homogeneous pair X,Y ∈ P, the bipartite subgraph

induced by G between X and Y .

When there are few error edges and the partition P is reasonably balanced,
such a description may be significantly smaller than the naive representation
of G. Nonetheless, having a partition P with few error edges does not by itself
ensure that G is simple: the quotient trigraph, and the subgraphs induced by
parts or by error edges could all be arbitrarily complex.

This leads to the following definition, whose underlying idea is to ask for a
good partition at all possible scales. A contraction sequence for a graph G is a
sequence Pn, . . . ,P1 of partitions of V (G), which

1. starts with the partition into singletons Pn = {{x} | x ∈ V (G)},
2. finishes with the trivial partition P1 = {V (G)}, and
3. progresses from Pi+1 to Pi by merging two parts, that is replacing some

parts X,Y ∈ Pi+1 with (X ∪ Y ) ∈ Pi.

The indices of the partitions are chosen backwards so that Pi has exactly i
parts.

Notice that the definition of contraction sequence does not involve the edges
of G in any way: this is because we have not yet required the partitions Pi to
‘have few error edges’. In a trigraph H = (V,E,R), the error degree of v ∈ V ,
denoted by degErr

H (v), is the degree of v in (V,R), that is the number of error
edges incident to v. The width of a contraction sequence Pn, . . . ,P1 is the
maximum error degree observed throughout the sequence:

max
i⩽n

max
X∈Pi

degErr
Tri(G,Pi) (X) .

Thus, this condition is about the number of error edges not globally, but locally
around each part. Finally, the twin-width of the graph G is the minimum width
of a contraction sequence for G. See Figure 2.2 for a first illustration.

We invite the reader to check the following basic properties:

1. Given a graph G = (V,E), denote by GC = (V,
(
2
V

)
\ E) its comple-

ment, obtained by replacing edges with non-edges and vice-versa. Then
tww(G) = tww(GC).

2. For any induced subgraph H of G, tww(H) ⩽ tww(G): twin-width is
monotone under taking induced subgraphs.
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Figure 2.2: Example of a contraction sequence of width 2. The contraction
steps are represented in reading order. At each step, parts are represented by
circles, and the quotient trigraphs are drawn in thick edges. For simplicity,
singleton parts and the edges joining them are omitted.
In this sequence of trigraphs, no vertex is incident to more than two error edges,
hence the width of the contraction sequence is 2. One may check that this is
optimal for this graph, because it contains C5 as induced subgraph. Thus, its
twin-width is 2.

2.2 First examples and basic constructions

The path Pn is the graph with vertex set [n] (where [n] denotes {1, . . . , n}),
and edges from i to (i + 1) for all i ∈ [n − 1]. Consider the sequence of
partitions Pn, . . . ,P1 where

Pi =
{
{1}, {2}, . . . , {i− 1}, {i, . . . , n}

}
,

see Figure 2.3. This is clearly a contraction sequence, and in each trigraph
Tri(Pn,Pi), there is exactly one error edge between {i− 1} and {i, . . . , n}. It
follows that the maximum error degree is 1, and tww(Pn) ⩽ 1. The cycle Cn is
obtained by adding the edge from 1 to n to the path Pn. With the very same
sequence of partitions, the trigraph Tri(Cn,Pi) now has at most two error
edges from {i, . . . , n} to {i − 1} and {1} respectively, from which it follows
that tww(Cn) ⩽ 2.

These two bounds are optimal for sufficiently long paths and cycles; this is a
good opportunity to introduce the following definition, which is the etymology
of ‘twin-width’. Given distinct vertices x, y in a graph G, their neighbourhood
difference ∆N (x, y) = (N(x)∆N(y))\{x, y} is the set of other vertices adjacent
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Figure 2.3: Typical partition in a contraction sequence for a path and a cycle.

to exactly one of x and y. The vertices x and y are said to be k-near twins if
|∆N (x, y)| ⩽ k. Vertices which are 0-near twins are simply called twins.1

Lemma 2.1. If G is a graph with tww(G) = k, then G contains k-near twins.

Proof. Given a contraction sequence Pn, . . . ,P1 of width k for G, it suffices to
consider the very first contraction, i.e. Pn−1. There is exactly one part {x, y}
in Pn−1 with two vertices, the others being singletons. Further, if z ∈ ∆N (x, y),
then {z} is in error with {x, y}. It follows that

|∆N (x, y)| = degErr
Tri(G,Pn−1) ({x, y}) ⩽ k,

i.e. x and y are k-near twins.

The reader may now check that paths on at least 4 vertices do not contain
twins, and cycles on at least 5 vertices do not contain 1-near twins, from which
it follows that the former bounds on twin-width are tight.

2.2.1 Contractions in trigraphs, trees and grids. So far, we have
defined contractions sequences in terms of the sequence of partitions. This
point of view is useful in many contexts, for instance in the algorithms presen-
ted at the end of this chapter, and the grid theorem of Chapter 3. However,
when working with concrete examples of graphs, it is often more natural to
directly consider the quotient trigraphs.

Given a trigraph G = (V,E,R) and two arbitrary vertices x, y ∈ V , the
contraction of x, y is the operation which replaces x, y with a new vertex z,
with the following edges: for any other vertex v ∈ V \ {x, y}

1. if v is connected to both x and y by normal edges, then v is connected
to z by a normal edge,

2. symmetrically, if v is adjacent to neither x nor y, then v is not adjacent
to z, and

3. in any other case, v is connected to z by an error edge.

A simple case analysis shows that contractions correspond to merging parts
in the following sense.

1In some contexts, one distinguishes true and false twins depending on whether or not
the twins are adjacent. This distinction is not relevant to twin-width.
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Figure 2.4: Typical trigraphs in the contraction sequences of width 2 for trees.
The circled pairs of vertices should be contracted for the next step; for the
trees in this example, several choices are possible.

Lemma 2.2. Consider a graph G, a partition P of V (G), two parts X,Y ∈ P,
and P ′ obtained from P by merging X and Y . Then Tri(G,P ′) is obtained
from Tri(G,P) by contracting the vertices X and Y .

A characterisation of contraction sequences through trigraphs follows.
Lemma 2.3. Let G be a graph and Gn, . . . , G1 a sequence of trigraphs. Then
there is a contraction sequence Pn, . . . ,P1 for G such that Gi = Tri(G,Pi) if
and only if

1. Gn = (V (G), E(G),∅), i.e. has the same vertices and edges as G and no
error edge,

2. G1 is the trigraph with only one vertex, and
3. Gi is obtained from Gi+1 by contracting two vertices.

We somewhat abusively call ‘contraction sequence’ both the sequence of
partitions Pn, . . . ,P1 and the corresponding sequence of trigraphs Gn, . . . , G1.
It should be clear from the context and notations whether we are referring to
partitions or trigraphs.

Let us now resume our list of graphs of small twin-width, using this new
characterisation to simplify the descriptions of the contraction sequences.
Fact 2.4 [19]. Trees have twin-width at most 2.

Proof. Consider a tree T . We will construct a contraction sequence Gn, . . . , G1

subject to the following conditions:

1. for each trigraph Gi = (Vi, Ei, Ri), the graph (Vi, Ei ∪Ri) is a tree,
2. each error edges of Gi is incident to a leaf of this tree, and
3. the maximum error degree in Gi is at most 2.

Initially, Gn has the same edges as T and no error edge, and clearly satisfies
the conditions. Then, given Gi+1, we construct Gi by the following rules (see
Figure 2.4).

• If Gi+1 contains two leaves with the same parent, contract them.

• Otherwise, there exists a leaf x with no siblings (e.g. take x at maximal
distance from the root); contract x with its parent.
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These rules apply until the remaining trigraph is reduced to one vertex, and
thus yield a contraction sequence. Clearly, the rules ensure that Gi remains a
tree. Furthermore, the vertex z in Gi resulting from the contraction is a leaf,
and any new error edge is incident to z, hence condition (2) is preserved. Let
us now verify that the error degree cannot exceed 2.

• Assume the first rule is applied to leaves x, y with parent t, contracted
into z. The error degrees of vertices outside x, y, t are unaffected, hence
we only need to consider z and t. Since z is a leaf, its error degree is at
most 1. As for t, remark that zt is an error edge only if xt or yt was an
error edge, and the contraction of x, y cannot create error edges from t to
a vertex other than z. It follows that the error degree of t cannot increase
in this operation.

• The second rule is only applied when for each node of Gi+1, at most one
child is a leaf. Thus after the contraction, in Gi, no node has more than 2
children leaves. It follows from condition (2) that the error degree cannot
exceed 2.

For a lower bound matching Fact 2.4, a slightly tedious case disjunction
shows that the subdivided claw (i.e. the tree whose root has 3 children, each
of which has a single child leaf) has twin-width exactly 2.

The (n×m)-grid2 is the graph on vertex set [n]× [m] in which two vertices
are adjacent if and only if they are at distance 1 in the plane.

Fact 2.5 [19]. Grids have twin-width at most 4.

Proof. The contraction sequence for the (n × m)-grid is as follows: the m
vertices of the first column are contracted with those of the second column,
that is, (1, 1) with (2, 1), then (1, 2) with (2, 2), until (1, n) with (2, n). At this
point, the trigraph obtained is the (n × (m − 1)) grid, except that all edges
incident to the leftmost column are error edges. We then repeat this process
until only a path remains, which is easily contracted. The reader may verify
that at all steps in this process, the maximum error degree is 4, which is reached
only by the vertex resulting from the previous contraction, see Figure 2.5.

An elegant argument of Ahn, Chakraborti, Hendrey, and Oum [2] shows
that the bound of 4 is reached for grids of size at least 7× 7.

This contraction process generalises to grids in any fixed dimension d (i.e.
the graph on vertex set [n]d where vertices are adjacent when they are at
distance 1 in Rd). One chooses an axis, and contracts the first hyperplane with
the second, then with the third, until a grid of dimension (d−1) remains. This
contraction sequence has width linear in d, and a near-twins argument shows
that this is optimal up to the multiplicative constant.

Fact 2.6 [19, Theorem 4.3]. Grids of dimension d have twin-width θ(d).

2Not to be confused with the grids in matrices used throughout Chapter 3, which are
unrelated, except for their visual representation.
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Figure 2.5: Typical trigraph in the contraction sequence and width 4 for grids.
The circled pair of vertices should be contracted for the next step.

2.2.2 Contraction tree and cographs. As our next example, we will
characterise the graphs of twin-width 0: they are exactly the cographs. To this
end, let us describe how contraction sequences can be represented as trees.

Consider any contraction sequence Pn, . . . ,P1 for a graph G. We incre-
mentally define binary trees T1, . . . , Tn such that the leaves of Ti are exactly
the elements of Pi.

• The tree T1 consists only of its root, corresponding to V (G).
• Assume that Ti has been constructed, and assume that X,Y are the

parts of Pi+1 which are merged to obtain Pi. Thus there is a leaf of Ti
corresponding to X∪Y , and Ti+1 is obtained from Ti by adding X and Y
as children of X ∪ Y .

The last tree T = Tn is called the contraction tree of the sequence Pn, . . . ,P1.
The nodes of T are all the subsets of V (G) which appear in Pn, . . . ,P1. Its
leaves are the singletons, in bijection with V (G), while each internal node of T
is the disjoint union of its children. The contraction tree partially records the
order of contractions, but does not fully describe the contraction sequence:
if X,Y are nodes of T , neither being a descendant of the other, then T does
not indicate which of X or Y was created first in the sequence.

There is another, more abstract description of this contraction tree, which
is an opportunity to introduce useful vocabulary on partitions. Consider again
a contraction sequence Pn, . . . ,P1. Then for any i ⩾ j, the partitions Pi,Pj

satisfy

(2.1) ∀X ∈ Pi, Y ∈ Pj , either X ⊆ Y or X ∩ Y = ∅,

i.e. Pi is obtained by splitting parts of Pj . It is said that Pi is a refinement
of Pj , or that Pj is a coarsening of Pi. To verify (2.1), remark that Pi+1 obvi-
ously refines Pi, and that the refinement relation on partitions is transitive—it
is a partial ordering.

Now denote by P =
⋃n

i=1 Pi the collection of all parts appearing throughout
the contraction sequence. It easily follows from (2.1) that P satisfies

(2.2) ∀X,Y ∈ P, either X ⊆ Y , Y ⊆ X, or X ∩ Y = ∅,

i.e. subsets in P never intersect in a non-trivial way. This property of the
family P is known as being laminar ; it guarantees that there exists a unique
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tree3 T whose nodes are elements of P, and such that a node X is a descendant
of Y if and only if X ⊆ Y . This is again the contraction tree.

Let us now apply this construction to graphs of twin-width 0: assume
that Pn, . . . ,P1 is a contraction sequence of G where the trigraphs Tri(G,Pi)
do not contain any error edges, and consider T the associated contraction tree.
Let X be an internal node of T with children Y1, Y2, meaning that X = Y1⊎Y2.
These correspond to some step i in the contraction sequence: Pi is obtained
from Pi+1 by replacing Y1, Y2 ∈ Pi+1 with X. Since Tri(G,Pi+1) has no error
edge, Y1 and Y2 must be either complete or anti-complete to each other. By
labelling the node X with 0, resp. 1, when Y1 and Y2 are anti-complete, resp.
complete to each other, we find that G satisfies the following:

Property 2.7. There is a tree T whose set of leaves is V (G), and whose internal
nodes are labelled with either 0 or 1, such that any two vertices x, y ∈ V (G)
are adjacent if and only if their least common ancestor in T is labelled with 1.

Property 2.7 characterises cographs, which we presented in Chapter 1 as
the graphs constructed by a sequence of disjoint and complete unions. Indeed,
the tree T describes how to construct G with disjoint and complete unions:
calling Gt the subgraph of G induced by the descendants of t, one can check
that if t is a node in T labelled with 0 (resp. 1) and with children t1, t2, then
Gt is the disjoint (resp. complete) union of Gt1 , Gt2 . This tree T describing
the construction of G is called cotree. See Figure 2.6 for an example.

a

b

c

d

e

f

1

0 0

1
a

b c

d

e f

Figure 2.6: Example of a cograph, and a cotree describing it.

Conversely, given a cograph G with cotree T , one can construct a con-
traction sequence of width 0 as follows. Without loss of generality, there are
no nodes in T with exactly one child—such nodes can be deleted. Assum-
ing |V (G) ⩾ 2|, T must contain sibling leaves x, y, which are twins in the co-
graph G: indeed, for any z ̸∈ {x, y}, the pairs x, z and y, z have the same least
common ancestor, hence xz ∈ E(G) if and only if yz ∈ E(G). Now contract x
and y: since they are twins, the resulting trigraph has no error edge, and has
exactly the same vertices and (normal) edges as G− x (or G− y). The latter
is also a cograph, whose cotree is T − x (resp. T − y), thus this process can be
repeated until reaching the one-vertex graph. This is a contraction sequence
in which trigraphs have no error edges, hence tww(G) = 0. Thus,
Fact 2.8 [19]. A graph G is a cograph if and only if tww(G) = 0.

3Actually a forest and not a tree in the general case. Here T is indeed a tree since the
full set V (G) is in P, and is the root of T .



2.2. FIRST EXAMPLES AND BASIC CONSTRUCTIONS 19

2.2.3 Clique-width. In light of Fact 2.8, twin-width can be seen as a nat-
ural generalisation of cographs, in much the same way that tree-width is a
generalisation of trees. This is interesting as there is another natural gener-
alisation of cographs as a complexity measure: clique-width. As announced
in the introduction, we will now see that classes with bounded clique-width
also have bounded twin-width. This result was proved in [19], but the precise
bound proved below was first published in [9].

Let us first define clique-width. It generalises the construction of cographs
through disjoint and complete unions, by allowing more complex operations.
These operations are defined on graphs G with some additional information: a
labelling λG : V (G) → [k], for some fixed k. The operations are the following:

disjoint union G⊕H, which makes a disjoint union of the vertices of G andH
while preserving the existing edges and labellings.

adding edges between labels i, j ∈ [k], which preserves the vertices and their
labels, but adds the edge xy for any vertices x, y with labels i and j
respectively.

relabelling by f : [k] → [k], which keeps the graph G unchanged, but replaces
the labelling λG with f ◦ λG.

The clique-width cw(G) is the minimum number k of labels needed to con-
struct G with these operations, starting from graphs with a single vertex.
Fact 2.9 (Baril, Couceiro, Lagerkvist [9]). For any graph G,

tw(G) ⩽ 2 cw(G)− 1.

Proof. Fix the number k of labels. Given G labelled with λG : V (G) → [k],
the labelling defines a canonical partition of the vertices

PG =
{
λ−1
G (i) | i ∈ [k]

}
.

For the sake of induction, we will prove the following: for any labelled
graph (G,λG) constructed by disjoint union, relabelling, and addition of edges
using at most k labels, there is a contraction sequence Pn, . . . ,Pℓ of width at
most 2k − 1 which finishes not with the trivial partition {V (G)}, but rather
with the canonical partition Pℓ = PG. When G is equipped with the trivial
labelling mapping all vertices to 1 (which can always be obtained by a single
relabelling operation), this proves the result.

disjoint union Assume that (G,λG), (H,λH) have contraction sequences as
above. In the disjoint union G ⊕ H, one can independently apply the
contraction sequence of G and that of H without any additional errors.
The partition obtained at this point is PG ⊎ PH . To obtain the desired
partition PG⊕H , it only remains to merge λ−1

G (i) with λ−1
H (i) for each

label i ∈ [k]. Since there remains no more than 2k parts at this point,
this cannot increase the error degree beyond 2k − 1.

adding edges Fix a contraction sequence Pn, . . . ,Pℓ as above for (G,λG).
Remark that any part P ∈ Pi in the sequence is contained in some λ−1

G (i),
i.e. all vertices of P have the same label. We now add edges from vertices
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labelled i to the ones labelled j. Given parts X,Y ∈ Pi, there are two
cases: ifX is labelled i and Y labelled j (or vice versa), then the new edges
ensure that X,Y are homogeneous; otherwise, no edge is added between
them. Either way, the new edges cannot create an error betweenX and Y .
Thus the same contraction sequence also still satisfies the requirement
after adding the edges.

relabelling Consider G labelled with λ : V (G) → [k], and a relabelling
map f : [k] → [k]. Call µ = f ◦λ the new labels, and Pλ,Pµ the canonical
partitions corresponding to λ, µ. Notice that vertices with the same la-
bels in λ also have the same labels in µ. It follows that Pλ is a refinement
of Pµ. Suppose now that we have a contraction sequence Pn, . . . ,Pℓ with
width 2k − 1, such that Pℓ = Pλ. Since Pλ refines Pµ, this sequence
can be extended with a few merges to reach Pµ. Since Pλ already has
no more than k parts, these additional steps cannot increase the error
degree beyond k − 1. We thus obtain the desired contraction sequence
for (G,µ).

As announced in the introduction, we will see in section 3.3.1 that planar
graphs have bounded twin-width. They are well-known to have unbounded
clique-width, thus providing an example which separates bounded twin-width
from bounded clique-width. Interestingly, the definition of twin-width can
be restricted to characterise clique-width: defining component twin-width by
measuring the maximal size of a connected component in the graphs of error
edges of a contraction sequence, one finds that clique-width and component
twin-width are within a factor 2 of each other [18, 9].

2.2.4 Some graphs with large twin-width. So far, we have seen several
examples of families of graphs whose twin-width is bounded by small constants.
Let us now present classes of graphs which on the contrary have unbounded
twin-width.

The (n×n) rook graph is the graph with vertex set [n]×[n], in which (x1, y1)
and (x2, y2) are adjacent whenever either x1 = x2 or y1 = y2. It represents the
possible moves of a rook on a chessboard, hence the name.
Fact 2.10 [19]. The (n× n) rook graph has twin-width at least 2n− 4.

Proof. Using Lemma 2.1, it suffice to show that the (n×n) rook graph has no
(2n−5)-near twins. Consider distinct vertices v1 = (x1, y1) and v2 = (x2, y2) in
[n]× [n]. Without loss of generality, assume that they are on distinct columns,
i.e. x1 ̸= x2. Then for any y ∈ [n] \ {y1, y2}, we have that

(x1, y) ∈ N(v1) \N(v2) and (x2, y) ∈ N(v2) \N(v1)

This gives 2(n − 2) vertices in the symmetric difference of neighbourhoods,
hence v1, v2 are not (2n− 5)-near twins.

This near-twins argument amounts to only considering the first step in the
contraction sequence. In the next example, we will instead need to consider
a well chosen step in the middle of the sequence to obtain the desired lower
bound on twin-width.
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Figure 2.7: Rook graph, and 1-subdivided clique.

The r-subdivision of a graph G, denoted here by G(r), is the graph obtained
by replacing each edge xy of G by a path on (r + 1) edges joining x to y. In
the subdivision of G, the vertices which originate from V (G) are called central
vertices, while the added vertices (which have degree 2) are called subdivision
vertices.
Fact 2.11 [14, section 6]. For k ⩾ 1, if K(k)

n has twin-width t, then

n− 1 ⩽ (t+ 2)k+1.

Proof. Let G = K
(k)
n , and assume that tww(G) = t. In a contraction se-

quence Pn, . . . ,P1 of width t for G, consider the first contraction involving a
central vertex, that is, let i be maximal such that there is a part X ∈ Pi which
is not a singleton and contains a central vertex x. For r ∈ [k+1], denote by Cr

the set of vertices at distance exactly r from x in G. There are exactly n − 1
vertices in Cr, which are subdivision vertices when r ⩽ k, and central vertices
when r = k + 1.
Claim 2.12. Let P ∈ Pi be a part which is not a singleton. Then there are
at most t + 1 parts in Pi which are connected in Tri(G,Pi) to P by either a
normal or an error edge.

Proof. By assumption, at most t parts of Pi are connected to P by an error
edge, thus we only need to show that at most 1 part is connected to P by
a normal edge. Suppose for a contradiction that P1, P2 are connected to P
by normal edges. Consider x, z ∈ P (since it is not a singleton), y ∈ P1

and w ∈ P2. Then xyzw is a cycle of length 4 in G, which cannot exist since G
is a subdivided graph. ■

Remark now that all vertices in C1 are either in X, or in one of the t + 1
parts adjacent to X (by a normal or error edge). Thus the vertices of C1 are
split among at most t + 2 parts of Pi, one of which, say X1, must contain at
least n−1

t+2 of the vertices of C1. These vertices in C1 ∩ X1 have at least n−1
t+2

neighbours in C2, which again are split between at most t + 2 parts, one of
which contains at least n−1

(t+2)2 of them. This process can be repeated to find a
part Xr with at least n−1

(t+2)r vertices of Cr, until either r = k + 1 is reached,
or n−1

(t+2)r ⩽ 1. Recall now that Pi was chosen to be the first step in which a
central vertex, namely x, is involved in a contraction. It follows that no two
vertices of Ck+1 are in the same part of Pi, hence necessarily n−1

(t+2)k+1 ⩽ 1.
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Fact 2.11 implies that for any constant r, the class of r-subdivided graphs
has unbounded twin-width. Further, one can replace the constant r by a slow
growing function: for any function f : N → N, consider the class {K(f(n))

n }n∈N.
It follows from Fact 2.11 that this class has unbounded twin-width whenever
f(n) = o(log n). We will revisit the twin-width of subdivided graphs much
later in section 6.7.

2.3 Colouring

It is time to present some applications of twin-width: we will use contraction
sequences of small width to obtain good colourings of graphs.

A (proper) k-colouring of a graph G is a map λ : V (G) → [k] such that
the colours λ(x), λ(y) are different whenever x and y are adjacent. When
such a colouring exists, the graph G is called k-colourable. The chromatic
number χ(G) is the smallest k such that G is k-colourable.

We wish to show that graphs with small twin-width can be coloured with
few colours. Unfortunately, the clique Kn has twin-width 0, and requires n
colours; thus one can certainly not colour graphs of twin-width t with f(t)
colours for any function t. Fortunately, there is a very well-known notion
of ‘good colourings’ for graphs which may contain large cliques. The clique
number ω(G) denotes the maximum size of a clique contained in G. Remark
that ω(G) ⩽ χ(G). A hereditary class C of graphs is χ-bounded if there exists a
function f such that any G ∈ C satisfies χ(G) ⩽ f(ω(G)). In essence, C being
χ-bounded means that the only reason for which a graph G ∈ C may require a
large number of colours is that it contains a large clique. Remark that the class
of all graphs is not χ-bounded: there are numerous constructions of graphs with
no triangle (hence certainly no larger cliques) but arbitrarily large chromatic
number [88, 74, 37], and we will present yet another in section 2.3.1.

We will show in this section that graphs of twin-width t are χ-bounded.
As an introduction, we first consider the case of triangle-free graphs, that is
graphs satisfying ω(G) = 2.
Lemma 2.13 [15, Theorem 20]. Triangle-free graphs of twin-width t are (t+2)-
colourable.

Proof. Let Pn, . . . ,P1 be a contraction sequence for G of width t. We use
that G has no triangle in the following.
Claim 2.14. A part P ∈ Pi either is edgeless (i.e. there are no edges between
vertices of P ), or is not incident to any normal edge in Tri(G,Pi).

Proof. If uv is an edge inside P and PP ′ is a normal edge in Tri(G,Pi),
then uvw is a triangle for any w ∈ P ′. ■

Consider now the contraction sequence in reverse order, starting with P1.
We will construct a proper colouring λi : Pi → [t + 2], meaning that adja-
cent parts (by either a normal or a red edge) are given distinct colours. For
P1 = {V (G)} this is trivial, we assign an arbitrary colour to V (G).

Suppose now that Pi is obtained by merging X,Y ∈ Pi+1, and that we have
already coloured Pi as λi. Then we colour Pi+1 as follows (see Figure 2.8):

• Any Z ̸= X,Y keeps its colour λi+1(Z) = λi(Z).



2.3. COLOURING 23

3

X ∪ Y

3

X

3

Y

2

2

1

1

5

5

1

1

4

4

3

X ∪ Y

4

X

3

Y

2

2

5

5

1

1

Figure 2.8: Update rules for colourings of triangle-free graphs of twin-width t
(t = 3). The neighourhood of X,Y is represented. Left case: the normal edges
incident to X ∪Y ensures that X,Y are non-adjacent: they can keep the same
colour. Right case: without normal edges incident to X ∪ Y , the parts X,Y
and their neighbours add up to at most t+2 parts, thus t+2 colours is enough
to update X,Y .

• If X ∪ Y is incident to a normal edge, then it is edgeless by the claim,
and in particular X,Y are non-adjacent in Tri(G,Pi+1). Thus we can
keep the same colour for both parts: λi+1(X) = λi+1(Y ) = λi(X ∪ Y ).

• Otherwise, X ∪Y has at most t neighbours in Pi. Discarding the colours
of these neighbours, there remains two available colours among t + 2,
which we give to X and Y respectively.

2.3.1 A lower bound: twincut graphs. Before generalising Lemma 2.13
to a proof of χ-boundedness, let us present an almost matching lower bound:
there are triangle-free graphs with twin-width t and chromatic number t+1 for
arbitrary t ∈ N. This construction, called twincut graphs, was introduced in a
work with Bonnet, Bourneuf, Duron, Thomassé, and Trotignon [11] to answer
an unrelated question of Chudnovsky, Penev, Scott, and Trotignon [30]: they
are a class of triangle-free graphs which all contain either twins or a 2-cut, yet
have unbounded chromatic number. The construction is heavily inspired by
the well-known Zykov graphs [88].

The graphs Gk are constructed inductively as follows. First consider a
tree Tk of depth k − 1, in which nodes at depth i < k − 1 have exactly |Gi+1|
children. Each node of Tk is a vertex of Gk. The edges of Tk however are
not in Gk: they only serve to describe its structure. For each node x ∈ Tk at
depth i < k − 1, create a copy of Gi+1 in Gk using the children of x. Thus at
depth 2, the children of the root form a copy of G2; there are |G2| copies of G3

at depth 3, |G2||G3| copies of G4 at depth 4, etc. Finally, for each branch b
of Tk (i.e. a path from the root to a leaf), we add a new vertex vb to Gk, and
connect vb to all nodes of b. We call vb a branch vertex. The first graphs Gk
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G1 G2 G3 G4

Figure 2.9: Construction of the first few twincut graphs. Dashed edges repres-
ent the underlying tree Tk; they are not part of the graph. Hollow vertices at
the bottom are branch vertices. In G4, only edges from the first two branch
vertices are represented for readability.

are represented in Figure 2.9: G1 is a single vertex, G2 a single edge, and G3

is the cycle C5.
We will now show that these twincut graphs are triangle-free, and sat-

isfy χ(Gk) = k and tww(Gk) ⩽ k− 1, and thus proving χ(Gk) ⩾ tww(Gk) + 1,
only one off the upper bound of Lemma 2.13.
Lemma 2.15. The twincut graphs Gk are triangle-free.

Proof. The neighbourhood of a branch vertex vb is an independent set in Gk,
hence a branch vertex cannot be part of a triangle. We can thus discard all
branch vertices. What remains are disjoint copies of G1, . . . , Gk−1, which are
triangle-free by induction.

Lemma 2.16 [11]. The twincut graphs Gk have chromatic number χ(Gk) = k.

Proof. The proof is by induction on k. To show that Gk is k-colourable, remark
that Gk consists of disjoint copies of G1, . . . , Gk−1, connected by the branch
vertices which are pairwise non-adjacent. Then we can inductively colour the
copies of G1, . . . , Gk−1 with colours {1, . . . , k−1}, and colour all branch vertices
with k.

For the lower bound, consider λ be a proper colouring of Gk. We will
find a branch b = v1, . . . , vk−1 of Tk in which the colours λ(vi) are all dis-
tinct. Starting from the root r, suppose by induction that we have found a
path r = v1, . . . , vi−1 without repeated colours. The children of vi−1 form a
copy of Gi, which by induction cannot be coloured with less than i colours.
Thus there exists a child vi of vi−1 whose colour λ(vi) is distinct from the i−1
already used colours λ(v1), . . . , λ(vi−1), by which we extend b. Having con-
structed b, consider its branch vertex vb: it is adjacent to all of v1, . . . , vk−1,
and thus needs to use a kth different colour.

It only remains to bound the twin-width of twincut graphs. We would like
to thank Bourneuf and Thomassé for this unpublished proof.
Lemma 2.17 (Bourneuf, Thomassé). The twincut graphs Gk have twin-width
tww(Gk) ⩽ k − 1.
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Figure 2.10: The three steps to contract y with its neighbour in G′
4.

Proof. Observe that the property is satisfied by the first few graphs: G1, G2

have twin-width 0, while G3 = C5 has twin-width 2.
Let us now prove the result for k ⩾ 4 by induction. We work with trigraphs,

and for the sake of the induction, we will start with a slightly more complex
graph than Gk: let G′

k be obtained by adding to Gk for each branch vertex vb,
a new vertex wb connected only to vb by an error edge.

Consider now a vertex x ∈ Tk at depth k− 2, and denote by X its children,
which are leaves. Then G′

k[X] is a copy of Gk−1, which by induction has twin-
width at most k− 2. To each child y ∈ X is associated (1) a branch vertex vy,
corresponding to the branch from the root to the leaf y, and (2) a pending
vertex wy connected to vy by an error edge. Fix a contraction sequence of
width k − 2 for Gk−1. We will replicate it on X, while also contracting the
corresponding branch and pending vertices. Say that at some point in this
contraction sequence, y1, y2 ∈ X are to be contracted.

1. First we contract wy1
, wy2

, and call wy the resulting vertex. Then wy has
error degree 2, other vertices keep the same error degree.

2. Next we contract vy1
, vy2

into vy. Then vy has exactly three error edges
to y1, y2, wy, as the other neighbours are shared by vy1

and vy2
(they

are x and its ancestors). Furthermore, yivy is the only error edge from yi
to a vertex outside X.

3. Finally we contract y1 and y2 into y, reducing the error degree of vy to 2.
Once again, the only error edge from y to a vertex outside X is the one
to vy.

See Figure 2.10 for an illustration.
Thus, throughout these contractions, (1) the error degree of y ∈ X is only

one more than the error degree observed in the contraction sequence for Gk−1,
hence at most k−1, and (2) all other vertices have error degree at most 3 ⩽ k−1.

Once we have finished contracting the copy of Gk−1 as described above, all
of X is contracted into a single vertex y, with a branch vertex vy, a pending
vertex wy, and the error edges yvy and wyvy. This vertex y has no other
neighbour, and we finally contract y and wy. This process can be replicated
for every choice of x at depth k−2, and the resulting trigraph is exactly G′

k−1,
which by induction admits a contraction sequence of width k − 2.



26 CHAPTER 2. CONTRACTION SEQUENCES

2.3.2 χ-boundedness. Let us now come back to Lemma 2.13, which we
wish to generalise to a χ-boundedness proof. We will reformulate the argument
into a form which allows an induction on the clique number.

To prove Lemma 2.13, two recolouring rules were applied at each step of
the contraction sequence: (1) if a part has no incident normal edge, then it has
few neighbours, hence there always remains enough colours to recolour it, and
(2) otherwise X is edgeless, hence when splitting X, both parts can keep the
colour of X. Remark now that if we fix a vertex x, and consider the sequence
of parts containing x, these two rules do not alternate: once X ∋ x becomes
edgeless, any Y ⊂ X will also be edgeless; we can in fact immediately assign
the colour of X to x (and to all other vertices in X). The idea of the following
reformulation is to only consider the moment when X becomes edgeless.
Theorem 2.18 [15, Theorem 21]. Any graph G with twin-width t, clique num-
ber ω, and chromatic number χ satisfies

χ ⩽ (t+ 2)ω−1.

Proof. The proof is by induction on ω. The base case ω = 1 corresponds to
edgeless graphs and is trivial.

Fix a contraction sequence Pn, . . . ,P1 for G of width t, and let us consider
the contraction tree T . Recall that its nodes are elements of the laminar family

P = {X ∈ Pi | i ∈ [n]} ,

and that X is an ancestor of Y if and only if X ⊃ Y . Let ω = ω(G) be the
maximum size of a clique in G. We are now interested in the set of parts whose
clique number strictly decreases compared to G:

Ω = {X ∈ P | ω(G[X]) < ω} .

In the triangle-free case (ω = 2), these were the edgeless parts. Finally, define

P = {X ∈ P | X is inclusion-wise maximal in Ω} .

Claim 2.19. The family P is a partition of V (G).

Proof. Two parts X,Y ∈ P cannot be contained in each other by maximality,
and thus must be disjoint since P is a laminar family. Furthermore, for any
vertex x ∈ V (G), the singleton {x} is in Ω, hence either {x} or some larger
part containing it is in P, and thus P covers V (G). ■

We will now prove that Tri(G,P) is (t + 1)-degenerate: one can find an
ordering < of P for which each part P ∈ P has at most t + 1 neighbours
preceding P in <. This implies that Tri(G,P) is (t+ 2)-colourable.

Given X ∈ P, let p(X) be its parent in the contraction tree T , and call
index i(X) of X the step of the contraction sequence at which p(X) is created
by merging X with some other part. Thus p(X) ∈ Pi(X), and X ∈ Pi(X)+1.

Claim 2.20. For any X ∈ P, there are at most t + 1 parts Y1, . . . , Yt+1 with
some edge between X and Yℓ in G and satisfying i(Yℓ) ⩽ i(X).
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Proof. Fix i = i(X), so that p(X) ∈ Pi. By maximality of X, we know
that p(X) must contain an ω-clique. Then in Pi, no normal edge can be
incident to p(X): this would create an (ω + 1)-clique in G. Since Pi has error
degree at most t, this leaves at most t parts Z1, . . . , Zt in Pi incident to p(X)
(by error edges).

Now consider some Yℓ ∈ P and fix j = i(Yℓ) + 1, so that Yℓ ∈ Pj . Suppose
in a first time that i(Yℓ) < i. This gives i ⩾ j, hence Pi refines Pj . Since there
exists an edge between Yℓ and X, it follows that Yℓ must contain some Zm.
Two different Yℓ, Yℓ′ are disjoint, hence cannot contain the same Zm, leaving
only t choices for Yℓ.

It only remains to consider the case i(Yℓ) = i(X). In that case p(X) = p(Yℓ),
and X,Yℓ are the two parts merged to create p(X); there can only be exactly
be one part Yℓ satisfying this condition.

Thus at most t + 1 parts adjacent to X have index at most i(X): t with
strictly smaller indices, and one with the same. ■

We now order the parts of P according to their indices, breaking the ties
arbitrarily. By the claim, each partX is adjacent to at most t+1 parts beforeX
in this order. Thus there is a t + 2-colouring λ of P: assuming that λ(Y ) is
fixed for all Y < X, we choose λ(X) to be any colour which is not used by
any Y < X adjacent to X.

Finally, using that for X ∈ P the graph G[X] has no ω-clique, we can
by induction hypothesis colour each G[X] with (t + 2)ω−2 colours. Call this
colouring

µX : V (G[X]) → [(t+ 2)ω−2].

Then we colour G as follows: a vertex x contained in X ∈ P is given the colour

ν(x) = (t+ 2)ω−2λ(X) + µX(x).

Adjacent vertices in the same X are given distinct colours because µX is a
proper colouring of G[X], and adjacent vertices in different parts of P are
given distinct colours thanks to λ. This is a (t+ 2)ω−1-colouring of G.

We have thus proved that graphs with twin-width t and clique number ω
are (t + 2)ω−1-colourable. If the clique number ω is considered constant,
this is a polynomial function of twin-width. On the other hand, if we fix a
class with bounded twin-width, this proof only bounds the chromatic number
by an exponential function of the clique number. Pilipczuk and Sokołowski
proved that this bound can be improved to a quasi-polynomial function [79],
and Bourneuf and Thomassé improved their technique to obtain a polyno-
mial bound [23]. Thus any class C with bounded twin-width is polynomially
χ-bounded : graphs G ∈ C satisfy χ(G) ⩽ ω(G)c for some constant c.

We will not present these results in further details, but the techniques de-
veloped in their proof will play a crucial role in Chapter 6.

2.4 Algorithmic application

Let us conclude this chapter with a second application of twin-width, an al-
gorithm: we want to solve the independent set problem from the introduction
on graphs of small twin-width. Later, Chapter 4 will discuss a far reaching
generalisation of this algorithm to the first-order model checking problem.
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2.4.1 Independent set. Recall that a set S of vertices is called independ-
ent or stable if there is no edge xy ∈ E(G) with x, y ∈ S. The algorithmic prob-
lem of finding a largest independent set is notoriously simple to express, and
hard to solve: it is NP-complete, and under standard complexity hypotheses,
it admits no good approximation algorithm, and is not FPT with regards to
the solution size. We will show that it becomes FPT when given a contraction
sequence of bounded width.

Theorem 2.21 [19], [15, Theorem 9]. There is an algorithm which, given a
graph G, a contraction sequence for G of width t, and k ∈ N, decides whether G
contains an independent set of size k in time f(k, t) ·nO(1) for some computable
function f .

We first give a high level view of the proof of Theorem 2.21. It is a dynamic
programming algorithm: using the contraction sequence, it defines a number
of algorithmic subproblems (carefully chosen variants of the independent set
problem), each of which is easily solved when given the solutions to a few sim-
pler subproblems. Then, one can solve all of them, starting from the simplest
and working our way up to increasingly more difficult ones while remembering
all already found solutions. The last subproblem reached is the independent
set problem itself. If the number of subproblems to solve is polynomial, and
each of them takes polynomial time, this yields a polynomial algorithm.

What are these subproblems? In essence they are local variants of inde-
pendent set, where the vertices which can be used are restricted. For instance,
given some part P from the contraction sequence, one may ask for an inde-
pendent set inside P , rather than in the entire graph. Now if P was obtained
by merging P1, P2, we would like to quickly solve this problem on P , given the
solutions for P1, P2. If P1, P2 are not connected by any edge, this is easy: the
union of the best solutions for P1 and P2 will be the best for P . Similarly, if
there are all edges between them, no independent set may intersect both P1, P2,
so the best solution for P will be either the one from P1, or the one from P2.
But if P1, P2 are in error there is no reasonable way to combine their respective
solutions into an optimal one for P . The ‘independent set restricted to a part’
subproblem is not sufficiently general for this scheme to work.

The subproblem we actually consider is: given k parts P1, . . . , Pk from one
of the partitions in the contraction sequence, is there an independent set of
size k in P1 ∪ · · · ∪ Pk? We never need to consider more than k parts, since
we are only looking for an independent set of size k. Solving this subproblem
for all k-tuples of parts is not possible: the resulting complexity would be nk,
which is not FPT, and is the same as the trivial algorithm! The crucial insight
is that it is sufficient to solve this for the tuples P1, . . . , Pk which are connected
in the graph of error edges. Because the error degree is bounded, there are
only linearly many such tuples for a constant k.

Let us now make these ideas precise.

Proof of Theorem 2.21. The trace of an independent set S on a partition P
of V (G) is the map

trP(S) : P → N
X 7→ |X ∩ S|
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More generally, we call any map f : P → N a potential trace over P, and
say that f is realisable if there is an independent set S whose trace is f .
Remark that when P = {V (G)} is the trivial partition, the trace V (G) 7→ k
is realisable if and only if G contains an independent set of size k. Therefore
testing whether a given potential trace is realisable generalises the independent
set problem. Testing if a potential trace is realisable is the subproblem solved by
the dynamic algorithm: given a contraction sequence Pn, . . . ,P1, we compute
which potential traces are realisable, first over Pn, then Pn−1, until P1, which
answers the independent set problem.

Consider two consecutive partitions Pi+1,Pi in the contraction sequence,
where Pi is obtained by merging X,Y ∈ Pi+1. Let f : Pi → N be a potential
trace. We say that g : Pi+1 → N lifts to f if f(X ∪ Y ) = g(X) + g(Y ),
and f(Z) = g(Z) for any Z ∈ Pi+1 \ {X,Y }. There are exactly f(X ∪ Y ) + 1
traces over Pi+1 which lift to f , and f is realisable if and only if there exists
a realisable trace which lifts to f . Thus an instance of the subproblem in Pi

(testing if f is realisable) can be reduced to a few subproblems at the previous
step Pi+1 (testing if some g lifting to f is realisable), which is exactly what we
need for a dynamic programming algorithm.

There are however nk potential traces, hence we cannot afford to consider
all of them. We will now show that only a small subset of them are required.

Define the sum of a potential trace f as |f | =
∑

X∈P f(X), and its support
as supp(f) = {X ∈ P | f(X) > 0}. If A ⊂ P, then the restriction f|A is the
potential trace which coincides with f inside A, and is null outside A. Finally,
we call error graph of the partition P the graph Err(G,P) with vertices P,
and an edge XY whenever X,Y ∈ P are in error.

Claim 2.22. Let f be a potential trace over P, andH the subgraph of Err(G,P)
induced by supp(f). Then f is realisable if and only if

1. no normal edge exists between vertices of supp(f) in Tri(G,P), and
2. for any connected component C of H, the restriction f|C is realisable.

Proof. Firstly, the two conditions are necessary for f to be realisable: ifXY is a
normal edge in Tri(G,P), then all vertices ofX are adjacent to all vertices of Y ,
hence no independent set can intersect both X and Y ; and if f is realisable,
then so are all of its restrictions.

Let us now assume that the two conditions are satisfied. Let C1, . . . , Ck

be the connected components of H, and Si an independent set whose trace
is f|Ci

. We claim that S =
⊎

i∈[k] Si is an independent set, whose trace clearly
is f . Consider a, b ∈ S. If a, b are both in the same Si, then they are certainly
non adjacent. If a ∈ Si, b ∈ Sj with i ̸= j, call A ∈ Ci (resp. B ∈ Cj) the
part containing a (resp. b). By the first condition, there is no normal edge
between A and B. Furthermore, since A and B are in distinct components of
the error graph H, they are in particular non-adjacent. Thus there is neither
a normal nor an error edge between A and B in Tri(G,P), hence a and b are
non-adjacent in G. This proves that S is independent. ■

Say that a potential trace f over P is connected if supp(f) is connected
in Err(G,P). Claim 2.22 implies that if we already know which connected
potential traces over P are realisable, then we can test whether any given
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potential trace over P is realisable in polynomial time. Using this remark, we
can complete the dynamic programming algorithm.

Given a contraction sequence Pn, . . . ,P1 for G of width t, and the target
size k for the independent set, we proceed as follows.

1. For each Pi, enumerate the set Ti of potential traces over Pi which are
connected and have sum at most k. Call Ri ⊂ Ti the subset of realisable
traces, which we will compute.

2. If f ∈ Tn is a connected trace over the partition into singletons Pn, then
the support of f must be a singleton {x}, since Pn induces no error edge.
Thus testing if f is realisable, and computing Rn is trivial.

3. For i from n − 1 to 1, we compute Ri as follows, assuming that Ri+1

is already known: Given f ∈ Ti, enumerate the at most (k + 1) traces
g1, . . . , gk+1 over Pi+1 which lift to f . Claim 2.22 and the knowledge
of Ri+1 allow to test whether each gℓ is realisable, and f is realisable if
and only one of the gℓ is.

4. Finally, check whether the potential trace V (G) 7→ k in T1 is realisable.

The complexity of this algorithm is (
∑n

i=1 |Ti|) · nO(1). Thus, to conclude the
proof, we only need to bound the size of the Ti. First remark that at most kk
distinct potential traces can have the same support. Thus it suffice to bound
the number of possible supports, i.e. of connected subgraphs of Err(G,Pi) on
at most k vertices.
Claim 2.23. In a graph G on n vertices with maximum degree t, the number of
subsets of at most k vertices inducing a connected subgraph is at most n ·t2k−2.

Proof. If X induces a connected subgraph and |X| ⩽ k, then there is a walk of
length 2k−2 in G whose vertex set is exactly X: it can be obtained by walking
along a spanning tree of G[X]. Thus the number of such subsets X is bounded
by the number of walks of length 2k − 2, which is at most n · t2k−2. ■

It follows from the claim and previous remarks that |Ti| = (kt)O(k) · n, and
the algorithm runs in (kt)O(k) · nO(1).

2.4.2 Computing twin-width. The algorithm of Theorem 2.21 makes one
crucial assumption: the input graph is given together with a contraction se-
quence, witnessing its twin-width. Thus we cannot say that independent set
is FPT parameterized by twin-width and the solution size: this would require
an algorithm doing the same work as Theorem 2.21, but without having access
to a contraction sequence in the input. This is a limitation of most currently
known algorithms using twin-width ([55] is a notable exception).

It is therefore crucial to be able to compute good contraction sequences.
This is a major open problem, arguably the most important one related to
twin-width. This section is a short introduction to this problem—later chapters
will discuss some special cases in more depth.

First the bad news: finding an optimal contraction sequence is NP-hard.
Theorem 2.24 (Bergé, Bonnet, Déprés [10]). Given a graph G, it is NP-
complete to test whether tww(G) ⩽ 4.
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This rules out any hope of efficiently and exactly computing twin-width
in the general case. But we need not find the exact value of twin-width: if
given G with twin-width t, we can find a contraction sequence of width say 2t,
then algorithms such as Theorem 2.21 can still be applied to this contraction
sequence, with complexity FPT in t. Thus approximation algorithm are what
we really are looking for, and Theorem 2.24 does not preclude them.

We will be very generous regarding the meaning of approximation, for it
would be unwise to be picky about it when no algorithm is currently known:
the goal is an approximation up to any function of the optimum.

Question 2.25. Is there an algorithm which given a graph G with twin-width t,
finds a contraction sequence of width f(t) in time g(t) · nO(1), for some com-
putable functions f, g?

We call FPT approximation an algorithm which satisfies the constraints of
Question 2.25. Remark that these constraints are precisely chosen to ensure
that an FPT approximation of twin-width, combined with Theorem 2.21, gives
an FPT algorithm for independent set parameterized by twin-width and the
solution size.

As already stated, Question 2.25 is a major open problem. Chapter 5 will
discuss some significant specific structures for which approximation algorithms
for twin-width are known: ordered structures, permutations, and tournaments.
Section 3.4.3 also gives some insight on the difficulties underlying Question 2.25:
when considering only cubic graphs, we not only do not know how to approx-
imate twin-width, but cannot even answer a much simpler question: explicitly
construct cubic graphs with large twin-width.
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Chapter 3

GRIDS IN MATRICES

The previous chapter introduced twin-width through contraction sequences.
We will now present a second, equally important characterisation, the grid
theorem for twin-width: a graph G has bounded twin-width if and only if for
some choice of ordering of V (G), the adjacency matrix of G contains no large
grid-like structure. This grid theorem relies on a major result of extremal
combinatorics of Marcus and Tardos [73].

After introducing the Marcus–Tardos theorem, we will prove the grid the-
orem for twin-width, and demonstrate through examples how it can provide up-
per bounds on twin-width where explicitly constructing contraction sequences
may be tedious.

Finally, we will use a variant of this grid theorem to construct balanced
contraction sequences. Through compact encodings of graphs with small twin-
width, these balanced contraction sequence lead to a crucial result: an upper
bound on the number of graphs with bounded twin-width, which is exception-
ally useful to prove that certain classes of graphs have unbounded twin-width,
for instance graphs of bounded degree.

Preliminaries: matrices. Let us first fix a couple of notations and conven-
tions regarding matrices which are used throughout this chapter.

The most important is that we see the ordering of rows and columns as
an intrinsic part of a matrix, which plays an important role in the definitions
of this chapter. In particular, when manipulating the adjacency matrix of a
graph G, we will need to specify the ordering < of V (G) used for the rows and
columns: this choice of ordering may significantly alter the properties of the
matrix. We denote by A(G,<) this adjacency matrix.

The intersection of a row and column of the matrix is an entry, which has
a value. An entry with value v is called a v-entry. We will almost exclusively
manipulate 0–1 matrices, i.e. the values are either 0 or 1. For such matrices,
the rank is understood over the binary field F2.

3.1 Grids and sparsity

A division of a matrix M is a pair D = (R, C) of partitions of the rows and
columns of M into intervals: each part R ∈ R is an interval in the ordered set
of rows of M , and similarly with columns. If |R| = k and |C| = ℓ, we say that D
is a (k× ℓ)-division, or simply a k-division when k = ℓ. Parts R ∈ R or C ∈ C
are called blocks of rows and columns respectively, and the submatrix M|R×C

induced by the intersection of R and C is called a cell of D.
When D is a (k × l) division of a 0–1 matrix M , it is natural to define a

quotient M/D: it is a (k× l) 0–1 matrix whose rows and columns are R and C
respectively, which inherit the order of the rows and columns of M . In M/D,
there is a ‘1’ at the intersection of row R ∈ R and column C ∈ C if and only if
the cell M|R×C contains a ‘1’.

33
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Finally, a k-grid in a 0–1 matrix M is a k-division D of M such that the
quotient M/D consists only of ‘1’s, i.e. every cell of D contains a ‘1’. See
Figure 3.1 for an example. Having a k-grid in M for some large k means
that M contains many ‘1’ which in a sense are well distributed. We think of
such a matrix as complex, and will be interested in matrices without grids of
a given size-k.

0 1 0 0 0 0 1 1 0
0 0 1 1 0 0 1 0 1
0 0 0 0 1 0 0 0 0
1 0 0 0 1 1 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1
0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 1 0 1 0 1 0 0 0

Figure 3.1: Example of a 4-grid in a matrix: the lines indicate the division,
every cell of which contains a ‘1’.

Before introducing the main theorem of this section, let us mention two
easy and useful lemmas on grids and divisions.
Lemma 3.1. If a submatrix of M contains a k-grid, then so does M .

Proof. Let N be a submatrix of M and D = (R, C) a k-grid of N . The rows
and columns of M missing in N can be added to existing parts of R and C
respectively, while respecting the condition that R and C are partitions into
intervals. The result is a k-grid in M .

Lemma 3.2. Let M be a 0–1 matrix, D1 a division of M , and D2 a division
of M/D1. Then there is a third division D3 of M such that

M/D3 = (M/D1)/D2.

In particular, if M/D1 has a k-grid, then so does M .

Proof. Let Di = (Ri, Ci) be the partitions defining Di for i = 1, 2, 3. A
part R2 ∈ R2 is a set of rows of M/D1, hence an element R1 ∈ R2 is it-
self a block in R1. Thus R2 is a set of sets of rows of M . The division D3 is
defined by flattening:

(3.1) R3 =
{⋃

R1∈R2
R1 | R2 ∈ R2

}
,

and similarly for columns. It is easy to verify that D3 satisfies the desired
property.

Let us now focus on matrices which do not admit any k-grid, which are
called k-grid free. Intuitively, such matrices—if they are much larger than k–
cannot contain too many ‘1’. This intuition is formalised by the following
result, known as the Marcus–Tardos theorem, or formerly the Füredi–Hajnal
conjecture: for fixed k, the maximum number of ‘1’s in a k-grid free matrix M
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k2 rows

k2 columns

1
1

1
1

tall cell:
k non-zero rows

< k non-zero rows

< k non-zero columns

non-wide and
non-tall cell has
⩽ (k − 1)2 ‘1’s

1
1

1

1

1 1

1
1

1
1

1

1

wide cell:
k non-zero columns

Wide cells with
the same k non-
zero columns
combine into
a grid.

Figure 3.2: Types of cells in the proof of the Marcus Tardos theorem.

is linear in the size of M . This cornerstone result implies a famous conjecture of
Stanley and Wilf—which we shall discuss later in section 3.4.3 and Chapter 6—
and a major part of the theory of twin-width is built upon it. Its original proof,
reproduced below, is beautifully simple.

Given a 0–1 matrix M , let |M | denote the number of 1-entries in M . We
are interested in the maximum number of ‘1’s in a k-grid free matrix of a given
size, i.e. the map

f(n, k) = max{|M | : M is a k-grid free n× n matrix}

Theorem 3.3 (Marcus–Tardos [73]). For any k ∈ N, there is a constant ck
such that

f(n, k) ⩽ ck · n.

Proof. Let k ∈ N be fixed arbitrarily. We will prove a linear recurrence relation
for f(n, k). Without loss of generality, let us assume that n is a power of k2,
and consider M an n× n matrix without a k-grid.

Let D = (R, C) be the regular division of M into n/k2 parts: each cell of D
is a k2 × k2 matrix. By Lemma 3.2, the quotient matrix M/D is k-grid free.
Thus, |M/D| ⩽ f(n/k2, k), meaning that at most f(n/k2, k) cells of D contain
a ‘1’. Let us now split them in several types. A cell A of D is said to be wide
if inside A, at least k distinct columns contain a ‘1’. Similarly, A is tall if at
least k rows of A contain a ‘1’. See Figure 3.2 for an illustration. We will count
the ‘1’s contained in tall or wide cells separately from the rest.

Claim 3.4. A block R ∈ R of columns contains less than k
(
k2

k

)
wide cells.
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Proof. Suppose for a contradiction that R ∈ R contains k
(
k2

k

)
wide cells. For

each of these cells, pick k columns each containing a ‘1’, among the k2 columns
of R. By pigeonhole principle, the same subset R′ ⊂ R of k columns will be
chosen for at least k of these cells, say A1, . . . , Ak. Now consider the submatrix
formed by the columns R′, and the rows intersecting one of A1, . . . , Ak. This
submatrix has a k-grid, with the following division: each column of R′ is in its
own block, and each cell Ai defines a block of rows. Thus there is a submatrix
of M with a k-grid, a contradiction. ■

Claim 3.4 implies that there are at most n
k2 · k

(
k2

k

)
wide cells in total, each

of size k2 × k2. Thus the total number of ‘1’s in M contained in wide cells is
at most

(3.2) k4 · n
k2

· k
(
k2

k

)
= n · k3

(
k2

k

)
.

Naturally, the same bound applies to the ‘1’s contained in tall cells. Now
consider finally the cells which are neither tall nor wide. In such a cell, at
most (k− 1) rows and as many columns are non-zero, hence the number of ‘1’s
is at most (k − 1)2. Further, recall from the beginning of the proof that there
are at most f(n/k2, k) non-zero cells. It follows that the number of ‘1’s in M
contained in cells which are neither tall nor wide is at most

(3.3) f
( n
k2
, k
)
· (k − 1)2.

Combining (3.2) and (3.3), we obtain

(3.4) f(n, k) ⩽ f
( n
k2
, k
)
· (k − 1)2 + n · 2k3

(
k2

k

)
.

This last equation is of the form

(3.5) f(n, k) ⩽ bk · f
(
n

ak
, k

)
+ dk · n,

where ak, bk, dk depend only of k, and ak > bk. Under such a recurrence
equation, it is well known that f(n, k) = O(n), for k fixed.

The constant ck given by Theorem 3.3 is called the Marcus–Tardos con-
stant. The bound given by the previous proof, which we did not explicit,
is ck = 2O(k log k). A refinement of this argument due to Fox shows that it can
be improved to ck = 2O(k):
Theorem 3.5 [44, Theorem 13]. For any k, n ∈ N, f(n, k) ⩽ n · 3k · 28k.

For algorithmic purposes, let us finally remark that the proof of Theorem 3.3
is effective, and yields an FPT algorithm parameterized by k to find a k-grid
in a sufficiently dense matrix.

3.2 A grid theorem for twin-width

Let us now introduce the main result of this chapter: graphs whose adjacency
matrix contains no large grid have small twin-width. The idea originates from
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the work of Guillemot and Marx [61], and was generalised in [19, 17]. We will
see a number of variants of this result, starting with the simplest which applies
to graphs of bounded degree.
Theorem 3.6. Let G be a graph and < an ordering of V (G) such that the
adjacency matrix A(G,<) is k-grid free. Then tww(G) ⩽ max(2ck,∆(G)),
where ∆(G) is the maximum degree in G.

Furthermore, there is a polynomial algorithm which given G and < finds
contraction sequence of width max(2ck,∆(G)).

Proof. Let t = max(2ck,∆(G)) be the bound on twin-width we are aiming for.
We greedily construct a contraction sequence for G subject to the following
restrictions:

• The sequence only consists of partitions of V (G) into intervals of <, i.e.
one only merges parts which are consecutive for <.

• All parts have degree at most t, counting both normal and error edges.

That is, we start with the partition Pn into singletons, and if Pi has been
constructed, we choose Pi−1 to be any partition obtained by merging two
consecutive parts of Pi such that all parts in Tri(G,Pi−1) have degree at most t
(hence a fortiori error degree at most t). Notice that initially Pn satisfies the
second condition because we chose t ⩾ ∆(G). This process can be implemented
in polynomial time, and if it succeeds we obtain a contraction sequence of width
at most t as desired.

Let us thus assume that the former process fails after reaching a partition Pi.
Denote by P1 < · · · < Pr the parts of Pi. Furthermore, call M = A(G,<) the
k-grid free adjacency matrix, and consider the division D = (Pi,Pi) of M . We
will prove that the quotient M/D contains a k-grid, a contradiction.
Claim 3.7. In M/D, for any i ∈ [r − 1], there are at least 2ck + 1 entries ‘1’s
contained in the two consecutive columns Pi and Pi+1.

Proof. By assumption, merging Pi and Pi+1 is disallowed. Notice that mer-
ging Pi and Pi+1 will never increase the degree of a third part—this is why we
use total degree and not error degree.

Thus the reason merging Pi and Pi+1 is disallowed must be that Pi ∪ Pi+1

is adjacent to more than t ⩾ 2ck other parts of Pi. Each of these parts gives a
non-zero cell in the block Pi or Pi+1 of D. ■

By pairing consecutive columns in M/D, it follows from this claim that

(3.6) |M/D| ⩾ ⌊r/2⌋ · (2ck + 1).

Remark here that r > 2ck + 1, for otherwise it would be impossible to have
degree more than 2ck. Therefore,

(3.7)
r/2

⌊r/2⌋
⩽

r

r − 1
<

2ck + 1

2ck
,

allowing to rewrite (3.6) as

(3.8) |M/D| ⩾ ⌊r/2⌋ · (2ck + 1) >
r

2
· 2ck = rck.
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Thus M/D is an (r×r)-matrix containing more than rck ‘1’s, hence it contains
a k-grid by Theorem 3.3. This contradicts the hypothesis that M has no k-
grid.

Theorem 3.6 is helpful to obtain upper bounds on the twin-width of graphs:
instead of directly constructing a contraction sequence, one describes a well
chosen ordering of the vertices, for which the adjacency matrix has no large
grid. This good ordering may be much simpler to describe than the contraction
sequence. The following result is a beautiful example of this technique.

Recall from the Chapter 1 that a minor of G is a graph obtained by de-
leting vertices or edges, and by contracting edges. We claimed that for any
fixed H, graphs G which avoid H as a minor have bounded twin-width. We
will now prove it under simplifying assumptions: that G has bounded degree,
and contains a Hamiltonian path (a path through all vertices without repeti-
tion). Remark that it is sufficient to prove the result when H is a biclique Kt,t,
since any graph H on t vertices is a minor of Kt,t: if G avoids Kt,t as minor,
it also avoids H.
Theorem 3.8 [19, section 6.3]. Let G be a graph with a Hamiltonian path and
without Kt,t as minor. Then

tww(G) ⩽ max(2c2t,∆(G)).

Proof. We wish to use Theorem 3.6, and thus need to find an ordering <
of V (G) such that the adjacency matrix A(G,<) is 2t-grid free. Choose < to
be the order of vertices along some Hamiltonian path P of G. This ensures a
crucial property: if X ⊂ V (G) is an interval of <, then G[X] is a connected
subgraph, as witnessed by the subpath of P

Now suppose for a contradiction that D = (R, C) is a 2t-grid in A(G,<).
Enumerate the blocks as R = {R1 < · · · < R2t} and C = {C1 < · · · < C2t}.
Remark now that either Rt < Ct+1, or Ct < Rt+1. Without loss of generality,
let us assume the former case—otherwise the roles of R and C merely need to be
swapped. We now contract each of the parts R1, . . . , Rt, Ct+1, . . . , C2t (which
are all disjoint) to a single vertex: this is possible thanks to the Hamiltonian
path. Finally, we delete any other vertex, and any edge between parts Ri

and Rj or between Ci and Cj . Since D is a grid, each cell Ri × Cj contains
a ‘1’, hence the parts Ri and Cj are adjacent in G. It follows that the minor
of G obtained by the previous operations is Kt,t, a contradiction.

Both the Hamiltonicity and the degree requirement in Theorem 3.8 can be
removed. This was first proven in [19], using a specific depth-first search tree as
replacement for the Hamiltonian path. This proof is however fairly technical,
we will present a much simpler argument from [18] in section 3.3.1.

3.3 The rank perspective

Theorem 3.6 is only applicable to sparse graphs: dense graphs have large grids
in their adjacency matrix regardless of the choice of ordering, as proved by
the Marcus–Tardos theorem. Nonetheless, dense graphs may have small twin-
width, cliques being an extreme example. To accommodate these dense graphs,
this section presents a modified notion of grid, and the corresponding variant
of Theorem 3.6 which characterises twin-width.
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In grids, a cell is considered ‘bad’ if it contains a ‘1’. Cliques show that for
twin-width, there is nothing bad in a cell consisting only of ‘1’s. Thus we will
change the notion of grid by requiring every cell to be complex in a stronger
sense than just containing a ‘1’. It may seem natural to require every cell to be
non-constant—this seems to match well with the errors contraction sequences—
but this turns out insufficient. We will require an even stronger condition: a
cell is ‘bad’ if its rank is large. Since we are working with 0–1 matrices, rank in
this section is understood over the 2-element field F2—other reasonable notions
would also work.

Precisely, in a matrix M , a d-division D is called a rank-k d-division if every
cell of D is a submatrix of rank at least k. A rank-k k-division is abbreviated as
rank-k division, and the grid rank of a matrix M is the largest k such that M
admits a rank-k division. Remark that any rank-k division is a fortiori a grid:
a cell of rank k in a 0–1 matrix must certainly contain a ‘1’.
Theorem 3.9 [17]. For any graph G,

1. if tww(G) = k, then there exists an ordering < of V (G) for which A(G,<)
has grid rank at most 2k + 3, and

2. for any ordering < of V (G), if A(G,<) has grid rank at most k, then

tww(G) ⩽ f(k) for some function f(k) = 22
kO(1)

, and a contraction
sequence witnessing this can be computed in polynomial time.

The first half of this theorem is the purpose of grid rank—the claim fails
when replacing grid-rank with grids—while the second half is a natural exten-
sion of Theorem 3.6.

Instead of directly proving Theorem 3.9, we will introduce rank in the notion
of contraction sequences too, then show that this rank twin-width is equivalent
to the usual twin-width, and prove Theorem 3.9 with twin-width replaced by
rank twin-width.

3.3.1 Error rank. In a matrix M , if R and C are subsets of rows and
columns respectively, then rkM (R;C) denotes the rank of the submatrix in-
duced by R × C. Similarly, if G is a graph and A,B are subsets of vertices,
then rkG(A;B) is the rank of the adjacency matrix of G restricted to rows in A
and columns in B. We drop the matrix or graph in this notation when there
is no ambiguity.

Consider a contraction sequence Pn, . . . ,P1 for a graph G. We wish to
weaken the notion of width, introducing rank in it. A naive notion would be
the following: two parts A,B ∈ Pi are in k-error if rk(A;B) > k, and one asks
for a contraction sequence in which each part is in k-error with at most k other
parts. This fails horribly: for G an arbitrary graph on vertices {v1, . . . , vn},
consider the contraction sequence which regroups vertices one by one in a single
large part, i.e. Pi consists of a part {i, . . . , n}, and singletons {1}, . . . , {i− 1}.
Since all but one part of Pi are singletons, the rank between two distinct parts
never exceeds 1: there are no 2-errors in this contraction sequence. Remark
however that the rank between {i, . . . , n} and the union of the remaining parts
is large, motivating the next definition.

Given a graph G = (V,E), a partition P of V , and a part P , call error
rank erkG,P(P ) the smallest k such that there is a subset Q ⊂ P of at most k
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parts satisfying
rk(P ;V \ (∪Q ∪ P )) ⩽ k,

where ∪Q denotes the union of parts in Q. That is, ignoring k ‘bad’ parts Q
chosen depending on P , the rank of P against all the rest of the graph (rather
than individual other parts) is bounded by k. The error rank of the contraction
sequence Pn, . . . ,Pi naturally is the smallest k such that erkG,Pi

(P ) ⩽ k for
any step i and part P ∈ Pi.

It is useful to notice that merging parts P1, P2 ∈ P can never increase the
error ranks of the remaining parts.
Lemma 3.10. Let P ′ be a refinement of P, and assume that P is a part in
both P and P ′. Then

erkG,P(P ) ⩽ erkG,P′(P ).

Proof. Let k = erkG,P′(P ): there is a family Q′ ⊂ P ′ of k-parts such that
rk(P ;V (G) \ (∪Q′ ∪ P )) ⩽ k. Since P ′ refines P, each Q′ ∈ Q′ is contained
in some part Q ∈ P. Denote by Q ⊂ P the family of at most k such parts Q,
and remark that ∪Q′ ⊆ ∪Q. It follows that rk(P ;V (G)\ (∪Q∪P )) ⩽ k, hence
erkG,P(P ) ⩽ k.

For contraction sequences, error rank is less constraining than width.
Lemma 3.11. A contraction sequence of width k ⩾ 1 has error rank at most k.

Proof. If Pn, . . . ,P1 has width k, then for any part P ∈ Pi, ignoring the k
parts in error with P , the adjacency matrix between P and the rest of the
graph only contains columns full of ‘0’ or full of ‘1’. This has rank 1.

Conversely, we will show that any contraction sequence of error rank k can
be converted into a new contraction sequence whose width is bounded by a
function of k. The ideas underlying this result can be found in the proofs of
[19, Theorem 5.4], [14, Lemma 3.8], and [17, Theorem 2].
Theorem 3.12. Given a contraction sequence for G of error rank k, one can
compute in polynomial time a contraction sequence of width 2O(k4).

The idea behind Theorem 3.12 is that a partition P of bounded error rank
can be refined into a partition of bounded error degree.

We will need a number of lemmas. The first shows that in a partition P
of bounded error rank, when considering P ∈ P, the choice of ‘bad’ parts to
ignore can be fixed: they are the parts with high rank towards P . Crucially
this choice is symmetrical: if Q is bad for P , then P is also bad for Q.
Lemma 3.13. Consider P a partition of the vertices of G = (V,E) with error
rank at most k, and a part P ∈ P. Define Q as the set of parts Q other than P
satisfying rk(P,Q) > k. Then |Q| ⩽ k, and

rk(P ;V \ (∪Q ∪ P )) ⩽ k(k + 1).

Proof. By assumption, there is a set of k parts R = {R1, . . . , Rk} such that
rk(P ;V \ (∪R ∪ P )) ⩽ k. Any part Q ∈ Q satisfies rk(P ;Q) > k, which
immediately implies that Q is in R: we must discard Q to find error rank less
than k. Thus Q ⊆ R, proving that |Q| ⩽ k.
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Now consider the matrix with rows P and columns V \ (∪Q ∪ P ). The
columns are the ones of V \ (∪R ∪ P ), plus the ones from Ri for each i sat-
isfying rk(P ;Ri) ⩽ k. Thus this matrix consists of at most k + 1 matrices
each of rank at most k put side by side, hence its rank is at most k(k + 1) as
desired.

Using this lemma, we will next show how to refine a partition of error
rank k into one of error degree 2O(k2). It is important that this refinement
be sufficiently close to P, in the following sense: recall that P ′ is called a
refinement of P if each part of P is equal to some union of parts of P ′. We
say that P ′ is furthermore a k-refinement of P (and P a k-coarsening of P ′) if
each part of P is equal to the union of at most k parts of P ′. For example, in
a contraction sequence Pn, . . . ,P1, the partition Pi is a 2-refinement of Pi+1.
Lemma 3.14. Let P be a partition of the vertices of G = (V,E) with error
rank at most k. Then there exists a 2k(k+1)-refinement R(P) of P, computable
in polynomial time, with error degree less than (k + 1) · 2k(k+1).

Furthermore, if P ′ refines P, both with error rank at most k, then R(P ′)
refines R(P).

Proof. Given a part P ∈ P, denote by QP the set of parts QP other than P
satisfying rk(P ;QP ) > k. Let MP denote the adjacency matrix of G, restricted
to columns in P and rows in V \(∪QP∪P ). By Lemma 3.13, rk(MP ) ⩽ k(k+1).
Since MP is a 0–1 matrix with rank at most k(k+1), it contains at most 2k(k+1)

distinct columns. Then, we repartition P =
⊎

i⩽2k(k+1) P ′
i so that for each i,

all columns of MP in P ′
i are equal. Finally, R(P) is the partition

R(P) =
{
P ′
i | P ∈ P, i ∈ [2k(k+1)]

}
.

Computing R(P) in polynomial time is easy. Let us show that it has bounded
error degree.

Consider two parts A′
i, B

′
j ∈ R(P) (i.e. A,B ∈ P, i, j ∈ [2k(k+1)]). Assum-

ing that A ̸= B and rk(A;B) ⩽ k, we claim that A′
i and B′

j are homogeneous.
Indeed, consider the submatrix with columns A and rows B. This is both a sub-
matrix of MA and of the transpose of MB . Thus by construction, all columns
of A′

i are equal, and all rows of B′
j are equal, and the submatrix consisting of

columns in A′
i and rows in B′

j is constant. Therefore A′
i and B′

j are in error
only if A = B or rk(A;B) > k. For fixed A and i this leaves k+1 choices of B
and (k + 1)2k(k+1) − 1 choices of B′

j , hence the bound on the error degree.
Let us finally prove that this construction is compatible with refinement.

Let P ′, also of error rank k, be a refinement of P. Given a part P ∈ P ′, let P
denote the part of P containing P . If P,Q ∈ P ′ are such that rk(P,Q) > k, then
certainly rk(P ,Q) > k. It follows that the rows considered in the matrix MP

(defined relative to the partition P) are a subset of the rows considered in MP

(defined relative to P ′). Thus, if columns x, y ∈ P are equal in MP , they a
fortiori are equal in MP . This shows that R(P ′) refines R(P).

To prove Theorem 3.12, we will apply Lemma 3.14 to each partition of
a contraction sequence of bounded error rank. This does not quite give a
contraction sequence, but the next lemmas allow to fill the gaps.
Lemma 3.15. In a graph G, let P be a partition with error degree k, and P ′

a t-refinement of P. Then P ′ has error degree less than (k + 1)t.
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Proof. Consider a part P ′ ∈ P ′, contained within P ∈ P. Let Q1, . . . , Qk

be the parts in error with P in P. Then any part in error with P ′ in P ′ is
contained in one of P,Q1, . . . , Qk, each of which contains at most t parts of P ′.
This leaves (k + 1)t choices for a part in error with P ′, minus P ′ itself.

Given any two partitions Pm,P1, we say that Pm, . . . ,P1 is a partial con-
traction sequence from Pm to P1 if Pi is obtained by merging two parts of Pi+1.
Naturally, the width of this partial contraction sequence is the maximum error
degree of Pm, . . . ,P1. Remark that whenever Pm is a refinement of P1, there
exists a partial contraction sequence from Pm to P1.
Lemma 3.16. Let Pm, . . . ,P1 be a partial contraction sequence. If Pm is a
t-refinement of P1 and P1 has error degree at most k, then this contraction
sequence has width less than (k + 1)t.

Proof. Immediate by Lemma 3.15.

Combining these lemmas proves the theorem.

Proof of Theorem 3.12. Consider Pn, . . . ,P1 a contraction sequence of error
rank k for G. Define

t = 2k(k+1) and k′ = (k + 1)2k(k+1).

By Lemma 3.14, there is a t-refinement R(Pi) of Pi with error degree at
most k′, and furthermore R(Pi+1) refines R(Pi). Remark that R(Pn) = Pn

must the partition into singletons, and it is easy to check from its construction
that R(P1) = P1 is the trivial partition.

To apply Lemma 3.16, we additionally need R(Pi+1) to be a bounded
refinement of R(Pi). To this end, remark first that R(Pi+1) t-refines Pi+1,
which itself 2-refines Pi. It follows that R(Pi+1) 2t-refines Pi. Then note that
whenever A refines B which itself refines C, if A is a s-refinement of C, then A
also s-refines B (and B s-refines C). Applied to R(Pi+1), R(Pi),Pi, this gives
that R(Pi+1) 2t-refines R(Pi).

Thus we have a sequence of partitions of error degree k′, starting with
singletons, ending with the trivial partition, and progressing by 2t-refinements.
By Lemma 3.16, this can be completed into a contraction sequence of width
less than 2t(k′ + 1) = 2O(k4) by inserting any partial contraction sequence
from R(Pi+1) to R(Pi) for each i. Finally, since the partitions R(Pi) can be
computed in polynomial time, so can the resulting contraction sequence. This
concludes the proof of Theorem 3.12.

The next sections will show that error rank is in a sense equivalent to grid
rank, which together with Theorem 3.12 proves Theorem 3.9. Beforehand, let
us present a simple application of error rank: as announced in the introduction
and section 3.2, we will show that planar graphs, and more generally Kt-
minor free graphs have bounded twin-width. This was first proved in [19,
Theorem 17], but the proof presented here closely follows the technique of
Bonnet, Kim, Reinald, and Thomassé [18, section 4].
Lemma 3.17. Any non-trivial planar graph contains two vertices u, v in the
same face, both of degree less than 18.
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Proof. Consider a planar graph G = (V,E), and denote by X the set of vertices
of degree at least 18. Remark that

(3.9) 2|E| =
∑
v∈V

deg(v) ⩾
∑
v∈X

deg(v) ⩾ 18|X|.

Let E(X) denote the subset of edges with both endpoints in X.
Now suppose for a contradiction that each face f of G is incident to at

most one vertex outside of X. Then all but two of the edges incident to f are
in E(X). Since f is incident to at least 3 edges, at least a third of them are
in E(X). Summing over all faces, it follows that

(3.10) |E(X)| ⩾ |E|
3
.

Consider now the planar subgraph consisting of vertices X and edges E(X).
By (3.9) and (3.10) it satisfies

(3.11) |E(X)| ⩾ 3|X|.

This contradicts the well known fact, derived from Euler’s formula, that any
planar graph satisfies |E(X)| ⩽ 3|X| − 6.

Corollary 3.18 [19, 18]. Planar graphs have bounded twin-width.

Proof. Given a planar graph G, we construct a contraction sequence Pn, . . . ,P1

satisfying the following: any part P ∈ Pi either is a singleton, or is adjacent
(by a normal or error edge) to at most 36 other parts of Pi. This contraction
sequence is simply obtained by iteratively contracting the two vertices given by
Lemma 3.17. When a contraction creates the part P , its degree is at most 36,
and contractions of other parts can never increase the degree of P . Thus the
only parts which can have degree more than 36 are the ones which have yet
to be involved in a contraction, i.e. singletons. Note that since the contracted
vertices are in the same face, their contraction preserves planarity, allowing to
apply Lemma 3.17 beyond the first step.

We claim that the error rank of this contraction sequence is at most 36.
Indeed singletons always have error rank 1, and a part P with degree at most 36
also has error rank at most 36: we choose to ignore the parts adjacent to P ,
and what remains is a null matrix. Thus we obtain a bound on tww(G) by
Theorem 3.12.

The bound on the twin-width of planar graphs given by Corollary 3.18 is far
from tight. Several bounds on their twin-width using a variety of techniques
have been proved [19, 14, 18, 20, 65, 64], the last of which, due to Hliněný and
Jedelský, shows that planar graphs have twin-width 8. This is almost matched
by the construction of planar graphs with twin-width exactly 7 by Král and
Lamaison [68].

In order to generalise this argument to Kt-minor free graphs, we will admit
the following lemma.
Lemma 3.19 (Norine, Seymour, Thomas, Wollan [76]). For any t ∈ N, there
exists d ∈ N such that any non-trivial Kt-minor free graph G contains two
vertices x, y of degree at most d which are either adjacent or twins.
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Theorem 3.20 [19, 18]. There is a function f such that any Kt-minor free
graph G satisfies tww(G) ⩽ f(t).

Proof. The vertices x, y to contract given by Lemma 3.19 either are twins, in
which case contracting them is equivalent to deleting either one, or are adjacent.
In either case, contracting them yields a minor of the original graph, hence the
Kt-minor free hypothesis is preserved.

The rest of the proof is exactly the same as Corollary 3.18.

3.3.2 From twin-width to grid rank: compatible orders. We now
resume the proof of Theorem 3.9, and first prove that graphs with small twin-
width have adjacency matrices with low grid rank. Given a contraction se-
quence Pn, . . . ,P1 for a graph G, an ordering < of V (G) is said to be com-
patible with the contraction sequence if any part X ∈ Pi at any step of the
contraction sequence is an interval of (V (G), <). Equivalently, the ordering <
is compatible with the contraction sequence if < is the left-to-right ordering of
some plane embedding of the contraction tree. With this second definition, it
is clear that any contraction sequence admits a compatible ordering.
Lemma 3.21. Let G = (V,E) be a graph and < an ordering of V compatible
with a contraction sequence of error rank k. Then A(G,<) has grid rank at
most 2k + 3.

Proof. Let Pn, . . . ,P1 be the given contraction sequence for G and < the com-
patible ordering, and call M = A(G,<). For a contradiction, assume that M
contains a rank-(2k + 4) division D = (R, C).

Choose the earliest step in the sequence (i.e. the largest i ∈ [n]) such that
some part of Pi contains as subset a part of either R or C: say R ∈ R is a
subset of P ∈ Pi (the situation would be symmetrical if C ∈ C was a subset
of P ). By maximality of i, P is the part of Pi obtained by merging two parts
of Pi+1, and no Q ∈ Pi \ {P} may contain a part of R or C, while P itself may
not contain more than one part of C. Further, since all parts of Pi and C are
intervals of <, any Q ∈ Pi \ {P} intersects at most two parts of C, while P
intersects at most three. See Figure 3.3 for an illustration.

Since Pi has error rank at most k, there is a set Q ⊂ Pi of k parts such
that rk(P ;V \ (∪Q∪ P )) ⩽ k. The k parts of Q plus P altogether intersect at
most 2ℓ+ 3 parts of C. Since D is a division into (2k+ 4) parts, there remains
some C ∈ C disjoint from ∪Q∪ P , and since D is a rank-(2k + 4) division, the
cell R × C satisfies rk(R;C) ⩾ 2k + 4. Since R is contained in P and C is
disjoint from ∪Q ∪ P , it follows a fortiori that rk(P ;V \ (∪Q ∪ P )) ⩾ 2k + 4,
a contradiction.

3.3.3 Grid rank theorem. We finally extend Theorem 3.6 to grid rank.
Theorem 3.22 (Theorem 3.9 restated). Let G be a graph and < an ordering
of its vertices such that A(G,<) has grid rank less than k. Then G admits
a contraction sequence of error rank 2(k − 1)ck2 = 2O(k2) compatible with <,
which can be computed in polynomial time given G, <, and k.

The idea remains the same: the contraction sequence is created greedily,
and if the process fail, then the Marcus–Tardos theorem yields a contradiction.
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R P

PQ1 Q2 Q3
C

Figure 3.3: Illustration of the proof of Lemma 3.21. Two divisions of the same
matrix are considered: the rank-(2k + 4) division D is drawn in solid lines,
and Pi from the contraction sequence is drawn in dashed lines.
Parts of Pi non-homogeneous with P (P,Q1, . . . , Qℓ) are filled in red. There
are few of them, and each Qi intersects at most two parts of C, hence there
remains C ∈ C disjoint from them. One reaches a contradiction by considering
the rank of the cell R× C (highlighted with red border).

Let us establish a few notations before starting the proof itself. The grid
rank k which we try to reach for a contradiction is fixed in all that follows.
Consider a matrix M and a division D = (R, C) of M , with blocks of rows
R = {R1 < · · · < Rn}, and blocks of columns C = {C1 < · · · < Cm}. We first
say that a cell of D is red if its rank is at least k. Given a block of rows R ∈ R,
denote by red(R) =

⋃
C∈C, rk(R,C)⩾k C the set of columns which intersect R in

red cells.
Next, consider R ∈ R a block of rows and Ci ∈ C a block of columns.

Define C<i =
⋃

j<i Cj the set of columns located left of Ci, and C⩽i = C<i∪Ci.
We say that the cell R× Ci is blue with regards to R if

rk(R;C<i \ red(R)) < rk(R;C⩽i \ red(R)).

That is: restricting the matrix to rows in R, the cell R×Ci is blue with regards
to R if one of its columns is linearly independent from all the columns before Ci

which are not in a red cell. Being blue with regards to a block of columns C is
defined symmetrically, and finally R×C is simply called blue if it is blue with
regards to either R or C. The point is that several blue cells combine into a
matrix of high rank.
Lemma 3.23. Let M be a matrix and D a division of M containing k blue
cells Z1, . . . , Zk, which belong to pairwise distinct blocks of rows and of columns.
Then rk(M) ⩾ k.

Proof. Let R = {R1, . . . , Rs} and C = {C1, . . . , Ct} be the blocks of D. We
can delete any block which does not contain any Zi (this does not increase the
rank), and permute the order of blocks so that Zi = Ri × Ci (this does not
change the rank of M). Denote by Mi the submatrix with rows R1 ∪ · · · ∪ Ri

and columns C1 ∪ · · · ∪Ci. If Zi is blue with regards to Ri, then some column
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of Ci is linearly independent from the columns in C1 ∪ · · · ∪ Ci−1, which im-
plies rk(Mi) > rk(Mi−1). The reasoning is symmetrical when Zi is blue with
regards to Ci, and we find that rk(Mi) ⩾ i by induction.

The important idea is that red and blue cells are the correct notions of ‘bad’
cells: we will next show that (1) if there are many red or blue cells in a matrix,
its grid rank is large, and (2) if there are few of them in each block, then the
error rank of the partition is small.
Lemma 3.24. Let M be a matrix and D a m-division of M such that

1. either D contains ck ·m red zones,
2. or D contains ck2 ·m blue zones.

Then M has grid rank at least k.

Proof. Consider the division D = (R, C). In the first case, let red(M,D) be
the 0–1 matrix with rows R and columns C, in which an entry is 1 if and only
if the corresponding cell is red. By Theorem 3.3, red(M,D) contains a k-grid,
which lifts to a k-division D′ = (R′, C′) of M satisfying the following: each cell
of D′ contains a red cell of D. It follows that D′ is a rank-k division.

For the second case, we similarly consider blue(M,D) the 0–1 matrix in-
dicating blue cells. There is a k2-grid in blue(M,D), lifting to a k2-division
D′ = (R′, C′) of M such that each cell of D′ contains a blue cell of D. Now
define the k-division D′′ by regrouping the blocks of D′ by groups of k. Con-
sider any cell N of D′′. Inside N , D′ induces a k-division in which every cell
contains a blue cell of D. It follows from Lemma 3.23 that rk(N) ⩾ k. Thus D′′

is a rank-k division.

Lemma 3.25. Consider a graph G with adjacency matrix M = A(G,<).
Let P be a partition of V (G) into intervals of <, which is also seen as a
division (P,P) of M . Consider a part P ∈ P, seen as a block of rows. If P
contains at most r1 red cells of P, and at most r2 cells which are blue with
regards to P , then erkG,P(P ) ⩽ max(r1, r2(k − 1)).

Proof. Remove from the block of rows P the at most r1 red cells, and consider
the submatrix M ′ of M consisting of rows in P , and columns outside red(P ).
Each cell inside M ′ has rank less than k (for otherwise it would be red). Fur-
thermore, any column of M ′ which is not in a blue cell with regards to P is
a linear combination of columns to its left. Therefore, the columns of M ′ are
linearly generated by the at most r2 blue cells, each of which has rank less
than k. It follows that

erkG,P(P ) ⩽ rk(M ′) ⩽ r2(k − 1).

We finally have all the tools to prove the main theorem of this section.

Proof of Theorem 3.22. Consider a graph G with vertices ordered by < so that
the adjacency matrix M = A(G,<) has grid rank less than k. We greedily
construct a contraction sequence Pn, . . . ,P1 compatible with < and subject to
the following restriction: in Pi, we may only merge parts P, P ′ if each of them
contains at most 2ck red cells and 2ck2 blue cells.
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Suppose in a first time that this process succeeds. Remark that testing if
a cell is red or blue can be done in polynomial time, hence the contraction
sequence Pn, . . . ,P1 can be computed in polynomial time.
Claim 3.26. The sequence Pn, . . . ,P1 has error rank at most 4(k − 1)ck2 .

Proof. Call P, P ′ the two parts of Pi merged to obtain Pi−1. By Lemma 3.10,
the error rank of a part Q ∈ Pi \ {P, P ′} does not increase when merging P
and P ′, hence we only need to check the error rank of the new part P ∪ P ′.

By assumption, in Pi the part P has at most 2ck red cells and at most 2ck2

blue cells, hence by Lemma 3.25,

(3.12) erkG,Pi(P ) ⩽ 2(k − 1)ck2 ,

and similarly for P ′. Furthermore, error rank is subadditive, hence

(3.13) erkG,Pi−1
(P ∪ P ′) ⩽ erkG,Pi

(P ) + erkG,Pi
(P ′) ⩽ 4(k − 1)ck2 .

This proves the claim. ■

Suppose now that the construction fails: we reach a partition Pi such that
among any two consecutive parts P, P ′ ∈ Pi, one has more than 2ck red cells,
or more than 2ck2 blue cells. Let m = |Pi| be the number of parts. By pairing
the parts of Pi, we find that the division (Pi,Pi) contains at least ck ·m red
cells, or at least ck2 ·m blue cells. It follows by Lemma 3.24 that M has grid
rank at least k, a contradiction.

Theorem 3.9 immediately follows from Theorems 3.12 and 3.22.

3.4 Versatile twin-width

In Theorems 3.6 and 3.9, we proved that when the adjacency matrix of G
has no large grid (respectively no high rank division), then a greedy algorithm
finds contraction sequences: one fixes a few easily checked constraints, and
there will always be a choice of contraction satisfying these constraints. In this
section, we show that by somewhat relaxing these constraints, one can actually
find linearly many choices of contraction. This leads to notions of balanced
contraction sequences, with several applications.

In a graph G, we say that a partition P of V (G) admits an ε-versatile
contraction sequence of width t if

1. either P = {V (G)} is the trivial partition,

2. or P has maximum error degree at most t, and for any subset F ⊂ P
of at most ε|P| forbidden parts, there is a pair X,Y ∈ P \ F such that
the partition obtained by merging X,Y recursively has an ε-versatile
contraction sequence of width t.1

1The original definition of versatile twin-width in [14] asks for ε|P| different pairs which
can be contracted. This is a weaker requirement than our definition, as it allows reusing a
single part in all these pairs, which turns out problematic in some applications. Fortunately
the issue is only in the definition: their proof in fact gives many disjoint pairs as noted
in [15].
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Finally we say that G has ε-versatile twin-width t if the partition into singletons
on G has an ε-versatile contraction sequence of width t. We will prove that
such versatile contraction sequences always exist, at the price of relaxing the
bound on the twin-width.
Theorem 3.27 [14]. For any k ∈ N, there are ε > 0 and t ∈ N such that any
graph with twin-width at most k also has ε-versatile twin-width t.

The proof of Theorem 3.27 is a variant of Theorem 3.9. Once again, we first
prove the result using versatile error rank, defined in the obvious way: width
is replaced with error rank in the definition of versatile twin-width. There, we
obtain a stronger result: the versatility parameter can be arbitrarily close to 1

2 .
Theorem 3.28. For any k ∈ N and ε > 0, there exists t′ ∈ N such that
any graph G whose adjacency matrix has no rank-k division admits a ( 12 − ε)-
versatile contraction sequence of error rank t′.

Proof. We simply replicate the proof of Theorem 3.9 with adjusted parameters.
Let < be an ordering of G such that M = A(G,<) has grid rank less than k.
Fix t′ = 4

ε (k − 1)ck2 .
Consider a partition P = {P1 < · · · < Pm} of V (G) into m intervals of <,

and with error rank at most t′. If m ⩽ t′, then all contractions will trivially
preserve error rank at most t′, thus let us assume m > t′. Choose F ⊂ P a
subset of at most ( 12 − ε)m forbidden parts.

Consider all disjoint the pairs (P2i−1, P2i) for i ⩽
⌊
m
2

⌋
. Say that (P2i−1, P2i)

is good if contracting it preserves error rank at most t′, and bad otherwise. Thus
we are looking for a good pair disjoint from F . Assume for a contradiction that
any pair disjoint from F is bad. Then among the

⌊
m
2

⌋
previous disjoint pairs,

the number of bad pairs is at least

(3.14)
⌊m
2

⌋
−
(
1

2
− ε

)
m ⩾ εm− 1

2
⩾
εm

2
.

(The last step being a gross approximation using m ⩾ t′ ≫ ε−1.)
If (P2i−1, P2i) is a bad pair, then either P2i−1 or P2i has error rank more

than t′

2 = 2
ε (k−1)ck2 in P (cf. proof of Theorem 3.9). It follows by Lemma 3.25

that P2i−1 or P2i contains more than 2
ε ck red cells, or more than 2

ε ck2 blue cells.
Summed over the εm

2 bad pairs, this yield at least ckm red cells or ck2m blue
cells, and thus a rank-k division by Lemma 3.24, a contradiction.

It remains to transform this versatile error rank into versatile twin-width:
this is the equivalent of Theorem 3.12 in the versatile setting.
Lemma 3.29. For any k ∈ N, ε > 0, there are k′ ∈ N, ε′ > 0 such that any
graph with ε-versatile error rank k also has ε′-versatile twin-width k′.

Proof. Consider a graph G with ε-versatile error rank k, and fix the parameters

t = 2k(k+1)

k′ = (k + 1)22k
2+2k+1 + 2k

2+k+1 = 2O(k2)

ε′ =
ε

2t

We will maintain the following objects and invariants:
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1. a partition Q with ε-versatile error rank k,
2. the t-refinement R(Q) with error degree (k + 1)t given by Lemma 3.14,
3. and a partition P which we want to prove has ε′-versatile twin-width k′,

such that P 2t-refines Q, and P refines R(Q).

Notice that under these conditions, P also 2t-refines R(Q). It follows by
Lemma 3.15 that the error degree of P is at most

(3.15) ((k + 1)t+ 1)2t = (k + 1)22k
2+2k+1 + 2k

2+k+1 = k′.

Thus we need not worry about the error degree of P as long as the former
invariants are maintained.

Initially, Q = R(Q) = P is the partition into singletons, which satisfies the
constraints. Denote m = |Q|, and m′ = |P| ⩽ 2tm. Say that a part P ∈ R(Q)
is tight if it also belongs to P. If P ∈ R(Q) is not tight, then it contains at
least two parts P1, P2 of P, and contracting P1 with P2 preserves the invariants.
Thus if R(Q) contains at least ε′m′ non-tight parts, we get as many disjoint
pairs of parts of P which can be contracted. This gives the ε′-versatile choice
of contraction for P which we are looking for.

Suppose now that the number of non-tight parts in R(Q) is at most

(3.16) ε′m′ ⩽
ε

2t
2tm = εm.

In this case, we will perform well-chosen contractions in Q to create new non-
tight parts. Notice that there is no versatility requirement here: we are con-
structing a versatile contraction sequence for P, and Q is not part of this
contraction sequence, it is merely an object used to guide the construction.

By extension, we call Q ∈ Q tight if all parts of R(Q) contained in Q are
tight. Thus there are no more than εm non-tight parts in Q. Since Q has
ε-versatile error rank t, there is a contraction of two tight parts Q1, Q2 ∈ Q
preserving this versatile error rank. We claim that this contraction preserves
our invariants. Call Q′ the partition obtained by contracting Q1, Q2.

• The contraction of Q1, Q2 preserves ε-versatile error rank t for Q by
assumption.

• Each of Q1, Q2 contains at most t parts of R(Q), all of which are tight.
Thus Q1, Q2 each contain at most t parts of P, and Q1 ∪Q2 contains at
most 2t. The remaining parts of Q each contain at most 2t parts of P by
the invariant. Therefore P 2t-refines Q′.

• By the second half of Lemma 3.14, R(Q′) is a coarsening of R(Q). Since P
refines R(Q), it also refines R(Q′).

We can thus alternate between contractions in P and Q while preserving
the invariants, and leaving at least ε′|P| disjoint choices whenever a contraction
in P happens. This process continues until Q becomes the trivial partition, at
which point it is trivial to complete the versatile contraction sequence for P.

Theorem 3.27 follows directly from Theorem 3.28 and Lemma 3.29. The
next sections will present some applications of this result, which rely on ver-
satility to keep some object balanced.
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3.4.1 Balanced partitions and integrality gap. Using versatile twin-
width and avoiding contractions with the largest parts, one can stop any part
from becoming much larger than the average. This yields balanced partitions
with bounded error degree. We will show a weighted version of this result, with
an application to dominating sets.

Call a (vertex) weight function on a graph G any function w : V (G) → R+.
Weights extend to subsets by sum: for X ⊆ V (G), w(X) =

∑
x∈X w(x).

Lemma 3.30 [15, section 5]. For any k, there exists constants c, k′ such that
given a graph G = (V,E) with twin-width k, a weight function w : V → R+

with total weight W = w(V ), and 0 < η ⩽W , one can find a partition P of V
such that

1. P has error degree at most k′,
2. P consists of at most cW

η parts, and
3. each part P ∈ P either is a singleton, or has weight w(P ) < η.

Proof. Let ε, k′ be the versatile twin-width parameters given by Theorem 3.27,
and fix c = 2

ε . We follow an ε-versatile contraction sequence of width k′

for G, allowing only contractions using parts of weight less than η
2 . Let P be

the partition reached when this process blocks. Clearly its error degree is at
most k′, and if P ∈ P has weight more than η, it must be that P was never
involved in a contraction, i.e. P is a singleton. Let us prove that |P| ⩽ cW

η .
Since the parts we forbid to use in contractions are those of weight at least η

2 ,
there can be no more than 2W

η forbidden parts. Thus, for these to block all
contractions of the ε-versatile contraction sequence, it must be that 2W

η ⩾ ε|P|,
hence |P| ⩽ 2W

ηε = cW
η .

In a graph G, a set S ⊆ V (G) of vertices is a dominating set if any vertex
either is in S or has a neighbour in S. That is, writing N [v] = {v} ∪ N(v)
for the closed neighbourhood, for any vertex v, S intersects N [v]. Finding the
minimum size of a dominating set in G, denoted γ(G) is a well-known NP-hard
problem. Like independent set, it is also hard to approximate and admits no
FPT algorithm for the class of all graphs, but has an FPT algorithm when
given contraction sequences of bounded width [15, section 4]. This is a variant
of Theorem 2.21, and a special case of the first-order model checking algorithm
which will be presented in Chapter 4.

For now, we are interested in approximations of dominating sets. One can
define the fractional relaxation of the problem: a fractional dominating set is
a weight function w : V (G) → [0, 1] satisfying w(N [v]) ⩾ 1 for any vertex v.
Notice that if w is restricted to only take integral values {0, 1}, then we recover
the usual notion of dominating set, with S being the set of vertices of weight 1.
The minimum total weight of a fractional dominating set in G is denoted γ∗(G).
Notice that γ∗(G) ⩽ γ(G). Unlike γ(G) which is hard to compute, γ∗(G) can
be computed in polynomial time: this is because it can be expressed as a linear
optimisation problem, a general class of problems solved by polynomial time
algorithm using the ellipsoid or interior point methods.

Unfortunately, computing γ∗(G) does not in general help to compute or
even approximate γ(G), as the ratio γ(G)/γ∗(G)—known as integrality gap—
can be arbitrarily large. When considering graphs of bounded twin-width on
the other hand, this integrality gap is bounded.
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Theorem 3.31 [15, Theorem 13]. For any k there is a constant ρ such that
any graph with twin-width k and fractional domination number γ∗ admits a
dominating set of size at most ργ∗.

Proof. Let c, k′ be the balanced partition parameters given by Lemma 3.30, and
fix η = 1

k′+1 and ρ = c
η . Fix G of twin-width t with a fractional dominating

set w : V (G) → [0, 1] of total cost γ∗. We use this fractional dominating
set w as our weight function, and apply Lemma 3.30 to obtain a partition P
of vertices into at most cγ∗

η = ργ∗ parts of weight less than η each, except
possibly for singletons.

Now construct S ⊂ V (G) by picking one arbitrary vertex in each part of P.
Thus |S| ⩽ ργ∗ as desired. We claim that S is a dominating set. Consider any
vertex v ∈ V (G) contained in a part P ∈ P, and denote by Q1, . . . , Qℓ ∈ P the
parts other than P containing neighbours of v. Then,

• If P is a singleton, i.e. P = {v}, then v is in S, hence is dominated.

• Similarly, if Qi = {u} is a singleton, then u is in S and by hypothesis is
a neighbour of v, which is thus dominated.

• We can thus assume that none of P,Q1, . . . , Qℓ are a singleton, hence each
of these parts has weight less than 1

k′+1 . On the other hand N [v] has
weight at least 1 since w is a fractional dominating set, and is contained
in P ∪Q1 ∪ . . . Qℓ. It follows that ℓ > k′. We now use that P has error
degree at most k′: the ℓ > k′ parts Q1, . . . , Qℓ are adjacent to P because
they contain neighbours of v, and one of them, say Qi, must be connected
to P by a normal edge in Tri(G,P). Then the vertex u ∈ Qi ∩ S is a
neighbour of v (in fact of all of P ), which is thus dominated.

Since there are methods to efficiently compute fractional dominating sets,
Theorem 3.31 can be turned into a polynomial time ρ-approximation algorithm
for dominating sets in graphs of twin-width k.

3.4.2 Compact representations. This section introduces a notion of par-
allelized contractions, by allowing simultaneous contraction of several disjoint
pairs of parts. Using versatile twin-width, one can construct parallelized con-
traction sequences of logarithmic length, which leads to some compact encod-
ings of graphs of bounded twin-width.

A parallel contraction sequence for a graph G is a sequence of partitions
Pm, . . . ,P1 of V (G) such that Pm is the partition into singletons, P1 = {V (G)}
is the trivial partition, and Pi+1 is a 2-refinement of Pi (i.e. each part of Pi

either was already in Pi+1, or is obtained by merging two parts of Pi+1). The
width of the sequence is the maximum error degree of the partitions. It follows
from Lemma 3.16 that a parallel contraction sequence of width k can be turned
into a normal contraction sequence of width 2k + 1.

The point of parallelisation is that the number m of steps can be much less
than n: using versatile twin-width, it can be decreased to O(log n).
Lemma 3.32. For any k ∈ N, there are constants δ > 0 and k′ ∈ N such that
any graph of twin-width k admits a parallel contraction sequence Pm, . . . ,P1

of width k′ satisfying |Pi| ⩽ (1 − δ)|Pi+1|. In particular, the length m is at
most logn

log(1−δ) .
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Proof. Let ε, k′ be the versatile twin-width parameters given by Theorem 3.27,
and fix δ = ε

1+ε .
We only consider contractions which preserve the existence of an ε-versatile

contraction sequence of width k′, which we simply call good contractions. Sup-
pose that Pi+1 of size r has already been constructed. Perform any good
contraction of parts X1, Y1 ∈ Pi+1, then X2, Y2 disjoint from X1, Y1, and so on
until we have contracted disjoint pairs (X1, Y1), . . . , (Xk, Yk), and no remain-
ing good contraction is disjoint from them. The partition reached at this point
is Pi, and we only need to prove that k ⩾ δr.

In Pi, no good contraction remains when forbidding use of the k parts
(X1 ∪ Y1), . . . , (Xk ∪ Yk). Since |Pi| = r − k, this means that k ⩾ ε(r − k),
which implies k ⩾ ε

1+εr = δr.

We will now describe an encoding of graphs using parallel contractions
sequences. The general idea, given the contraction sequence Pm, . . . ,P1, is to
reconstruct Tri(Pi+1) from Tri(Pi) by adding constant information to each
part of Pi.

For the purpose of encoding a trigraph T , it is convenient to assume that
the error edges incident to any vertex v have some fixed arbitrary number-
ing 1, . . . , ℓ (ℓ being the error degree). This numbering need not be symmetric:
an error edge uv might be the ith edge from u’s point of view, and the jth
for v. An encoding of T is expected to contain this numbering.

Now consider a graph G and partitions P,P ′ of its vertices with error degree
at most k and such that P ′ 2-refines P. Each part P ∈ P either is the union
of two parts P1, P2 ∈ P ′, or is itself in P ′, in which case we say that P1 = P
and P2 is undefined. Given an encoding of Tri(G,P), we construct an encoding
of Tri(G,P ′) by adding the following information for each part P ∈ P:

• whether P is obtained by merging two parts of P ′, i.e. whether P2 exists,

• if P2 exists, the nature of the edge P1P2 in Tri(G,P ′) (none, normal, or
error, and its number relative to P1 and P2 in the latter case),

• and, if the ith error edge from P connects it to Q, then the nature of the
edge PaQb for each combination of a, b ∈ {1, 2} (when the parts exist).

Given parts Pi, Qj ∈ P ′, it is simple to determine the type of edge between them
(none, normal, or error, and the numbering for the latter) from the type of edge
between the respective parents P,Q ∈ P, and the former information. For each
part P , the first item takes 1 bit, the second log k+1, and the last 4k(log k+1)
(up to 4k edges requiring log k + 1 bits each). Thus the information added for
each part P ∈ P is a function of k only.

Applying this method iteratively to all partitions of a parallel contraction
sequence obtained by Lemma 3.32 gives an encoding of graphs of bounded
twin-width. We will present a few different flavours of this, with the detailed
encoding optimized for various goals.
Fact 3.33. In a RAM model, graphs of twin-width k for fixed k can be encoded
in Ok(n) words allowing edge queries in time Ok(log n).

Proof. Given a graph G with twin-width k, consider a parallel contraction
sequence Pm, . . . ,P1 given by Lemma 3.32. We represent it as a binary tree,
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where each level corresponds to a partition Pi, and each part is the union of its
children. The condition |Pi| ⩽ (1− δ)|Pi+1| from Lemma 3.32 (δ > 0 function
of k) then ensures that this tree is of linear size.

We now simply add the previously described information to each node of
the tree to obtain a linear encoding of G. Given two vertices x, y, one can test
if xy is an edge by only looking up the branches of the encoding leading to the
leaves {x} and {y}, with a constant time processing at each level. Since the
encoding has depth Ok(log n), this gives the desired complexity.

To test whether xy is an edge in this encoding, only the informations on the
branches leading to x and y respectively is needed. In this sense, the encoding
is local. Let us formalize this idea. An f(n)-bits adjacency labelling schemes
for a class of graphs C consists of a labelling λ : V (G) → {0, 1}f(n) for each
graph G ∈ C on n vertices, along with a decoding function shared by all graphs
of C which given λ(x), λ(y) indicates whether or not x, y are adjacent.

For example, graphs with maximum degree d admit a simple (d + 1) log n
adjacency labelling scheme: the label of v lists the number of v and of each of its
neighbours, using log n bits each. Trees are known to have a (log n+O(1))-bits
adjacency labelling scheme [6], while planar graphs have a (1 + o(1)) log n-bits
labelling scheme [40].

In the case of twin-width, by reusing the proof of Fact 3.33 and labelling
each vertex with the information found on the corresponding branch, we obtain
the following.
Theorem 3.34 [14, Theorem 2.8]. Graphs of twin-width k admit an Ok(log n)-
bits adjacency labelling scheme.

In a different direction, one may aim to optimize the size of the encoding
at the cost of decoding time. This leads to bounds on the number of graphs
with small twin-width, which will be presented in the next section. Fact 3.33
uses Ok(n) words in a RAM model, but in this model each word implicitly
uses log n bits. This overhead is due to the pointer from each node of the
encoding tree to its parent, but this can be removed if the decoding time is not
a concern.
Fact 3.35. Graphs of twin-width k can be encoded using Ok(n) bits.

Proof. Consider a parallel contraction sequence given by Lemma 3.32 and rep-
resent it as a tree T of linear size, with a constant size label attached to each
node of T . We now enumerate the nodes of T in breath first order: level by
level, then left to right. The encoding of the graph is the concatenation of the
labels of all nodes along this order, which takes linear size.

The only difficulty in decoding is to find the parent or children of a given
node of T . Suppose we know a node t of T is the ith node of its level ℓ. The i−1
nodes preceding t on level ℓ are placed just before t in the encoding. By reading
the label of each of them to check whether it has one or two children, one can
deduce the position of the children of t at level ℓ+ 1. Applied iteratively from
the root, this reconstructs the parent–children relationship from the encoding.
The remainder of the decoding process is the same as in Fact 3.33.

While the previous three encodings have the advantage of being relatively
simple applications of versatile twin-width, they are far from optimal. Im-
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proving upon Facts 3.33 and 3.35, the following arguably is the current most
interesting encoding of graphs with bounded twin-width:
Theorem 3.36 (Pilipczuk, Sokołowski, Zych-Pawlewicz [80]). Graphs with
twin-width k and n vertices can be encoded using Ok(n) bits while allowing
edge queries in time Ok(log log n).

3.4.3 Small classes. In the previous section, we proved that graphs of
bounded twin-width can be encoded using space linear in the number of ver-
tices. This immediately yields an upper bound on the number of such graphs.
We will see that this seemingly simple result is a very powerful tool to prove
graphs have unbounded twin-width. Let us first give some terminology and
context.

There are two common ways to count the number of graphs in a class C:

1. counting up to isomorphism, i.e. counting the number of isomorphism
classes of graphs in C on n vertices, and

2. counting up to equality, where one counts the number of graphs in C with
vertex set {1, . . . , n}. This is also known as counting labelled graphs:
one thinks of the vertices as being labelled from 1 to n, and two graphs
are considered equal if both the labels of vertices and the edges between
them match.

Counting up to equality is usually easier, and thus more common in enumer-
ative combinatorics. While the two ways of counting give different result, the
ratio is at most n!. Precisely, if the class C contains s graphs on n vertices
when counted up to isomorphism, and t when counted up to equality, then we
have s ⩽ t ⩽ sn!. Indeed, for any graph G on n vertices considered up to
isomorphism, there are at most n! distinct ways to label V (G) from 1 to n, but
potentially fewer if G has automorphisms.

A class C is called small if C contains at most cn · n! graphs on n vertices
counted up to equality, for some constant c. It is called tiny it contains at
most cn graphs on n vertices counted up to isomorphism, for some constant c.
The former remark shows that any tiny class is also small.

For example, the number of trees with vertices {1, . . . , n} is nn−2, as first
proved by Cayley [28], hence the class of trees is small. When counting up
to isomorphisms, the number of trees is easily bounded by Catalan numbers,
themselves bounded by 4n, hence trees are also a tiny class. As a significant
generalisation, Norine, Seymour, Thomas, and Wollan proved that any class of
graphs avoiding a minor (e.g. planar graphs) is small [76].

The Stanley–Wilf conjecture, proved by Marcus and Tardos as corollary of
Theorem 3.3 (cf. [67]), states that any class C of permutations avoiding a pat-
tern has at most cn permutations on n elements for some constant c, i.e. is tiny
for the obvious generalisation of the notion to permutations. Although we have
defined neither patterns nor twin-width for permutations, it is crucial to men-
tion that for permutations, avoiding a pattern is equivalent to having bounded
twin-width, as noticed by Guillemot and Marx [61]. We will present this result,
and more generally twin-width of permutations in details in Chapter 6.

Notice that all the former examples of small or tiny classes have bounded
twin-width. Generalising all these results, we obtain the following as immediate
corollary of Fact 3.35.
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Theorem 3.37 [14]. Any class of graphs with bounded twin-width is tiny (and
a fortiori small).

Proof. If C is a class with bounded twin-width, graphs in C with n vertices can
be encoded using cn bits for some constant c, hence there are at most (2c)n of
them up to isomorphism.

Theorem 3.37 proves remarkably useful to show the existence of graphs
with unbounded twin-width: if one can show that a class C is not small, then C
must contain graphs with arbitrarily large twin-width. The prime example of
this technique is graphs with bounded degree. Call a graph subcubic if all its
vertices have degree at most 3.
Lemma 3.38. The number of subcubic graphs with vertex set {1, . . . , n} is at
least

2
3
2n logn−O(n).

Proof. For n even, we construct a family of bipartite subcubic graphs G with
vertex set {1, . . . , n} as follows: fix A = {1, . . . , n2 } and B = {n

2 + 1, . . . , n},
and pick three arbitrary perfect matchings E1, E2, E3 between A and B, whose
union in the edge set of G.

There are (n/2)! choices for each Ei independently. Several of these choices
can however lead to the same graph G. For a fixed G with no more than 3n

2

edges, there are at most 73n/2 ⩽ 19n ways to write E(G) = E1∪E2∪E3. Thus
the number of distinct graphs constructed by this method is at least

(3.17)
(n2 !)

3
2

19n
= 2

3
2n logn−O(n).

A small class contains no more than n!cn = 2n logn+O(n) graphs on the
vertex set {1, . . . , n}. This is asymptotically much smaller than the lower
bound given by Lemma 3.38. Thus the class of cubic graphs is not small, and
we obtain from Theorem 3.37:
Corollary 3.39 [14]. There are subcubic graphs with arbitrarily large twin-
width.

We can in fact be more precise: Lemma 3.38 shows that for any fixed t the
number of subcubic graphs is asymptotically much larger than the number of
graphs with twin-width at most t. Thus, if G is drawn uniformly at random
among subcubic graphs on n vertices, then the probability that tww(G) ⩽ t
tends to 0 as n increases. Therefore, if one fixes a sequence of sizes xn
which tends to infinity, and randomly draws Gn subcubic of size xn, then the
graphs {Gn | n ∈ N} have unbounded twin-width with probability 1. Hendrey,
Norin, Steiner, and Turcotte significantly improved this result by showing
in [63] that almost all subcubic graphs on n vertices have twin-width n1/4+o(1).

Unfortunately, these enumerative or probabilistic constructions currently
are the only known proofs of Corollary 3.39: although almost all graphs with
bounded degree have large twin-width, we are unable to explicitly describe a
sequence of subcubic graphs with unbounded twin-width—a problem humor-
ously called finding hay in a haystack. This partly explains the difficulty behind
finding efficient approximations of twin-width (Question 2.25): although not a
formal argument by any stretch, it is reasonable to expect any approximation
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algorithm for twin-width to result from some classification, or at least deep
understanding of graphs with large twin-width. However, when restricted to
cubic graphs, we are unable to exhibit a single example, let alone classify them.

Chapter 7 will further focus on bounded degree graphs: while leaving the
former question open, it will show that twin-width satisfies some interesting
geometric properties on bounded degree graphs, which do not hold in general,
and lead to the study of twin-width of groups. It will also prove that the
converse of Theorem 3.37 is false, constructing a tiny class with unbounded
twin-width, answering a question asked alongside the original proof of The-
orem 3.37 in [14].

Bibliographic notice

The Marcus–Tardos theorem was proved in 2004 [73], and the bounds on its
constant were significantly improved by Fox ten years later [44]. The theorem
was conjectured by Füredi and Hajnal in 1992 [46], and Klazar observed in
2000 [67] that it implied a famous conjecture formulated independently by
Stanley and Wilf in the 1980s.

Applying the Marcus–Tardos theorem to contraction sequences and the
resulting greedy algorithm of Theorem 3.6 are again key ideas of Guillemot
and Marx [61]. A first characterisation of twin-width with a variant of grids
was presented in the initial work on twin-width of Bonnet, Kim, Thomassé and
Watrigant [19]. It involves mixed minors, a notion in-between grids and rank
divisions, which we will use in Chapter 6. Its proof is somewhat tedious, as
complications arise from errors occurring at the frontier of two cells. This is
why we elect to present the similar result on grid rank of Bonnet, Giocanti,
Ossona de Mendez, Simon, Thomassé, and Toruńczyk [17], which is the source
of most of section 3.3.

The idea of error rank of contraction sequence as the natural equivalent of
grid rank of matrices has appeared implicitly several times, but has not so far
be formalised to our best knowledge. The idea notably appears in the proofs of
Theorem 4.16 in [19, 49]. It also draws inspiration from the oriented twin-width
of Bonnet, Kim, Reinald, and Thomassé [18].

Versatile twin-width and its applications (small classes, graph encodings,
integrality gap) are results from the second and third papers on twin-width
with Bonnet et al. [14, 15]. The presentation of Theorem 3.37 as a corollary of
encoding results is original; its first proof in [14] was a variant of the result of
Norine, Seymour, Thomas, and Wollan on classes avoiding a minor [76].



Chapter 4

FIRST-ORDER LOGIC

This chapter presents, without proofs, two major results relating twin-width
and first-order logic from [19]: a model checking algorithm, generalising the
independent set algorithm of Theorem 2.21, and a stability result under trans-
ductions, i.e. transformations described using first-order logic.

This short chapter is primarily meant for readers with little to no famili-
arity with logic. To the seasoned logician interested in the proofs of these
results and some extensions, we recommend the work of Gajarský, Pilipczuk,
Przybyszewski, and Toruńczyk [49].

We will start with an informal introduction of first-order logic on graphs,
which presents and motivates the main notions, algorithmic problems, and
questions considered. This will be followed by the precise definitions of these
notions and some important known results regarding them, and finally the two
announced results.

4.1 An informal introduction

We are interested in first-order formulæ over graphs: they are constructed by
quantifying on vertices, testing whether vertices are adjacent, and combining
these tests through the usual boolean operators ∨ (or), ∧ (and), ¬ (not). For
example, the formula

(4.1) ϕ = ∃x1, . . . ,∃xk,∀y,
k∨

i=1

y = xi ∨ E(y, xi)

expresses the existence of a dominating set of size k: there is a subset of k
vertices D = {x1, . . . , xk} such that any vertex y is either in D or adjacent
to it (adjacency being denoted by E(y, xi) in the formula). Given a graph G,
the fact that G satisfies the formula ϕ (in this case, meaning that G has a
dominating set of size k) is denoted by G |= ϕ. The point of this section is to
introduce some of the most common problems and questions considered in this
context of logic on graphs.

Algorithmic problems. There are two algorithmic problems usually asso-
ciated with any logic. The first is satisfiability:

Problem 4.1 (Satisfiability). Given a first-order formula ϕ, is there a graph G
such that G |= ϕ?

This is none other than Hilbert’s famous Entscheidungsproblem: is a given
formula ϕ always true? Of course, Hilbert problem was meant for general math-
ematical logic, whereas we only consider finite graphs. This is no less difficult:
satisfiability of first-order logic on graphs is well known to be undecidable. To
make the problem easier, one may restrict it by requiring the graph G to come
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from a fixed class C: this is called the satisfiability problem in C. Unfortunately,
satisfiability is still undecidable even when restricted to relatively simple classes
of graphs. Indeed, one can show the following by reduction from the halting
problem.

Theorem 4.2 (Folklore). Let C be any class of graphs containing at least the
planar graphs. Then the satisfiability problem in C is undecidable.

In fact, far less than all planar graphs is needed: grids with small paths
pending from each vertex are sufficient. The latter have twin-width at most 5,
and thus proving interesting results on the satisfiability problem using twin-
width seems hopeless.

Instead, we will focus the second most classical algorithmic question for any
logic: model checking.

Problem 4.3 (Model Checking). Given a graph G and a first-order formula ϕ,
test whether G |= ϕ.

Note the difference: for model checking, the graph G is given as input, for
satisfiability, one asks if it exists. Since finite graphs are considered, model
checking is decidable by a brute force enumeration. This brute force algorithm
in fact shows that first-order model checking is in the complexity class PSPACE
(problems solved using polynomial space, and up to exponential sat), while
an easy reduction from quantified SAT shows that it is also PSPACE-hard.
But should the reader write this reduction for themselves, they may notice an
amusing fact: when fixing G to be the graph with two vertices and no edge,
the model checking problem remains PSPACE-hard! The complexity of this
problem comes entirely from the formula, while the graph is largely irrelevant.

For this reason, model checking is almost exclusively considered from the
point of view of parameterised complexity: we will ask whether model checking
is fixed parameter tractable (FPT), with the formula ϕ as parameter, that is
whether there is an algorithm running in time f(ϕ) · nO(1), for some (comput-
able) function f from FO formulæ to N. As will be explained later in this
chapter, it can reasonably be assumed that such an algorithm does not exist in
general. However, FPT algorithms exist when the input graphs are restricted
to specific classes: historically, the first example of such a result comes from
graphs of bounded degree:

Theorem 4.4 (Seese [85]). There is an algorithm which tests whether G |= ϕ
in time f(ϕ,∆(G)) · n for some function f .

Expressiveness. The second kind of questions we consider bears on the ex-
pressiveness of first-order logic: can a given property P be defined using a
first-order formula? To continue our introductory example, for any fixed k,
the existence of a k-dominating set is expressible in first-order logic: there is a
formula ϕk such that a graph G has a k-dominating set if and only if G |= ϕk.

On the other hand, first-order logic cannot express that a graph is con-
nected. This is a folklore result proved using so called Ehrenfreucht–Fraïssé
games: one can show that for any formula ϕ, there exists a length ℓ such that

Cℓ |= ϕ ⇐⇒ (Cℓ ⊎ Cℓ) |= ϕ,
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where Cℓ⊎Cℓ denotes the union of two disjoint copies of the cycle Cℓ. Since Cℓ

is connected and Cℓ⊎Cℓ is not, it follows that there does not exist a formula ϕ
which is satisfied exactly by connected graphs.

The question of expressiveness is not limited to boolean properties: one can
for instance ask if a graph G can be encoded in another graph H through a
first-order formula. For example, given a graph G, the square G2 is the graph
with the same vertices as G, and such that x, y are adjacent in G2 if and only if
their distance in G is at most 2. Being at distance at most 2 can be expressed
in first-order logic as follows:

(4.2) ϕ(x, y) = E(x, y) ∨ (∃z, E(x, z) ∧ E(z, y)) ,

that is: x, y are at distance at most 2 if they are adjacent, or have a common
neighbour z. Thus the edge set of the square G2 is characterised by a formula ϕ,
applied to G:

xy ∈ E(G2) ⇐⇒ G |= ϕ(x, y).

This kind of construction is called a first-order interpretation.
In this context, we are most interested in the following question: given a

class C of graphs, is there a first-order interpretation which allows to construct
all graphs starting from C? When that is the case, C is called independent.

For example, consider the 1-subdivision G(1) of the graph G: each edge is
replaced by a path of length 2. Then it is easy to verify that G is an induced
subgraph of the square of G(1). Thus, if C =

{
G(1) | G is a graph

}
denotes

the class of all subdivided graphs, the ‘square’ FO interpretation applied to C
yields all graphs as induced subgraphs, which implies that C is independent.

By contrast, if D is the class of subcubic graphs (graphs with maximum
degree 3) one may show that the classes obtained by interpretation from D
are very restricted, and in particular, the class of all graphs cannot be reached.
Thus the class of subcubic graphs is dependent, which is also called NIP (stand-
ing for ‘non independence property’).

These two aspects of first-order logic on graphs are related by the following
conjecture of Gajarský, Hliněný, Obdržálek, Lokshtanov, and Ramanujan.
Conjecture 4.5 [48, Conjecture 8.2]. A hereditary class C has an FPT first-
order model checking algorithm if and only if it is NIP.

4.2 Definitions

Let us now formalise the ideas presented in the introduction of this chapter.

4.2.1 Relational structures. Before even discussing any logical notion,
we will generalise the objects to which they are applied: A graph (V,E) is a
set V of vertices equipped with one relation E, which is binary, symmetric,
and irreflexive. From the logic point of view, there is no reason to keep any
of these restrictions. Thus, we define a relational structure (V,E1, . . . , Ek) as
a set of vertices equipped with several relations E1, . . . , Ek, each with a fixed
but arbitrary arity, and with no symmetry or similar requirement.

It is useful to specify the number of relations which a structure should
have, and their arities. This is the purpose of a relational signature Σ: a
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set {R1, . . . , Rk} of relation symbols, each with an associated arity ar(Ri) ∈ N.
Relational structure can now be properly defined: a relational structure S over
the signature Σ, or simply Σ-structure, consists of:

• a set V (S) called the domain, universe, or by analogy with graphs, vertex
set1 of S, and

• for each symbol R ∈ Σ of arity r = ar(R), a valuation as a rela-
tion R(S) ⊆ V (S)r.

For example:

• Graphs are structures over the signature {E}, with ar(E) = 2.

• In Chapter 5, we will work with ordered graphs: they are structures over
the signature {<,E}, both of arity 2, where < is interpreted as a linear
order on the vertices and E as a set of edges.

• In Chapter 6, we will represent permutations as the superposition of two
linear orders <1, <2 on the same set, i.e. as structures over {<1, <2},
with ar(<i) = 2.

• Figure 4.1 gives an example of a relational structure with a relation of
arity 3.

Figure 4.1: A relational structure S over the signature {E,F} with ar(E) = 2,
ar(F ) = 3. The relation E is represented by blue edges, which are directed
since E(S) is not required to be symmetric. Similarly, F is represented by
green hyperedges, which are ordered 3-tuples.

Given a Σ-structure S and a subset X ⊂ V (S) of vertices, the induced
substructure S[X] is the Σ-structure with verticesX such that R(S[X]) consists
of all tuples of R(S) contained within X for each symbol R ∈ Σ.

We will often consider classes of relational structures. A class C of Σ-
structures is a collection of Σ-structures closed under isomorphism. The class is
hereditary if it is closed under taking induced substructures. When considering
a class C, it is implicit that all structures of C have the same signature, which
we also call the signature of the class.

1The notations V (S) and R(S) for the domain and the valuation of relations, blatantly
taken from graph theory, are not standard in model theory.
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4.2.2 First-order formulæ. Given a signature Σ, one can define the first-
order formulæ over Σ, i.e. the formulæ which can meaningfully be applied
to Σ-structures. For each relation R ∈ Σ of arity r, there is a relation pre-
dicate R(x1, . . . , xk), denoting that the k-tuple of vertices represented by the
variables x1, . . . , xk belongs to the valuation of R. Additionally, the equality
predicate x = y checks that two variables denote equal vertices. These relation
and equality predicate are also called atomic formulæ. They can then be com-
bined with the usual boolean operators ∨,∧,¬, and the quantifiers ∃ and ∀,
which quantify on the vertices of the structure.

A first-order formula ϕ may have free variables, i.e. variables which appear
without any binding quantifier, and which are usually written as explicit para-
meters, e.g. ϕ(x, y). A formula without free variables is said to be closed, and
is also called a sentence. Using examples from the introduction of this chapter,
the formula (4.1), expressing the existence of a dominating set, is closed: all
appearing variables have a corresponding quantifier. On the other hand, for-
mula (4.2), expressing that two vertices are at distance at most 2, has two free
variables standing for the vertices whose distance is to be tested.

If ϕ(x1, . . . , xk) is a formula over the signature Σ, S is a Σ-structure, and
v1, . . . , vk are vertices of S, then S |= ϕ(v1, . . . , vk) denotes that S satisfies the
formula ϕ, when the free variables x1, . . . , xk are interpreted as the respective
vertices v1, . . . , vk.

4.2.3 Model-Checking. We are interested in the following algorithmic
problem.

Problem 4.3 (Model Checking). Given a graph G and a first-order formula ϕ,
test whether G |= ϕ.

Specifically, we are interested in the complexity of this problem paramet-
erised by the size of the formula ϕ. This is a hard problem.
Theorem 4.6 (Downey, Fellows, and Taylor, [39]). First-order model checking
on graphs is AW[∗]-complete.

We refer the reader to [39] for the definition of the complexity class AW[∗];
we will not use the definition, and only manipulate the class AW[∗] using The-
orem 4.6 (which for our purpose could be taken as a definition). What matters
is that the complexity class AW[∗] is located fairly high in the parameterised
complexity hierarchy; it contains the hierarchy of classes W[k], and in par-
ticular is harder that the independent set problem. It is thus reasonable to
assume that AW[∗]-complete problems do not admit FPT algorithms: the con-
verse would be a significant collapse in the parameterised complexity hierarchy.

Assumption 4.7 (FPT ̸= AW[∗]). First-order model checking on graphs does
not admit an FPT algorithm.

Assuming thus that there is no FPT algorithm for first-order model checking
in general, it becomes meaningful to enquire about FPT algorithms for model
checking restricted to specific classes.

This line of research started by Seese who proved in 1996 that graphs with
bounded degree admit such algorithms [85] (see Theorem 4.4). Five years later,
similar result were obtained by Frick and Grohe for planar graphs [45], and more
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generally for graphs avoiding a minor by Flum and Grohe [43]. These results
were unified under the theory of sparsity of Nešetřil and Ossona de Mendez [75],
as they were generalised to classes of bounded expansion by Dvořák, Král,
and Thomas [41], and finally to nowhere dense classes by Grohe, Kreutzer,
and Siebertz [54]. Conversely, in any monotone (i.e. closed under subgraphs)
class C which is not nowhere dense, Kreutzer and Dawar remarked that first-
order model checking is AW[∗]-complete [69], showing that the last result is in
a sense optimal: for monotone classes, nowhere density characterises efficient
model checking.

Outside of this sparsity setting, surprisingly little was known until recently:
the main result was that classes of bounded clique-width have FPT model
checking not just for first-order, but also for the much more expressive mon-
adic second-order logic [34]. This is disappointing: one would expect the weaker
first-order logic to be efficiently checkable on more general classes of graphs.
Outside the realm of graphs, an interesting previously known result for dense re-
lational structures is an FPT algorithm for model checking in posets of bounded
width [47].

The algorithm using twin-width of [19] which we will present at the end
of this chapter was the first major advance in first-order model checking for
dense graphs beyond clique-width. Note here that both graphs with bounded
clique-width [19] and posets of bounded width [19, 8] have bounded twin-width.

For now, let us continue our introduction of logical notions with interpret-
ations, which are most useful when trying to prove hardness results for model
checking.

4.2.4 Interpretations, Transductions. Given relational signatures Σ,Γ,
a first-order interpretation Φ from Σ to Γ consists of

1. a domain formula ϕV (x) with one free variable, and
2. for each R ∈ Γ, a formula ϕR(x1, . . . , xr) with r = ar(R) free variables.

Given a Σ-structure S, its image Φ(S) is a Γ-structure, where

1. the domain consists of vertices of S satisfying the domain formula, i.e.
V (Φ(S)) = {x ∈ V (S) | S |= ϕV (x)}, and

2. each relation R ∈ Γ of arity r = ar(R) is interpreted as the set of tuples
satisfying the corresponding formula, i.e.

R(Φ(S)) = {(x1, . . . , xr) ∈ V (Φ(S))r | S |= ϕR(x1, . . . , xr)} .

A fundamental property of interpretations is backwards translation: any
first-order property of the image Φ(S) can be described on S itself.
Lemma 4.8 (Backwards translation). Given Φ an interpretation from Σ to Γ
and ψ a formula over Γ, there exists a formula ψ ◦Φ over Σ such that for any
Σ-structure S,

S |= ψ ◦ Φ ⇐⇒ Φ(S) |= ψ.

Sketch of proof. The formula ψ ◦ Φ is obtained from ψ by (1) replacing each
occurrence of a symbol R ∈ Γ by the corresponding formula ϕR from Φ, and
(2) restricting quantifiers to vertices satisfying the domain formula ϕV (x).

This allows to compose interpretations.
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Lemma 4.9. If Φ and Θ are interpretations from Σ to Γ and from Γ to ∆
respectively, then the function Θ ◦ Φ is an interpretation from Σ to ∆.

Sketch of proof. Apply backwards translation through Φ to the domain and
relation formulæ which define Θ.

Transductions generalise interpretations by introducing a non-deterministic
colouring operation. Given a set U of unary relation symbols (i.e. symbols of
arity 1), U-colouring is the operation which extends a Σ-structure S into a
(Σ ∪ U)-structure by choosing non deterministically an arbitrary valuation for
the symbols in U . Thus, the result of U-colouring S is the set of all (Σ ∪ U)
structures S′ such that (1) S and S′ have the same vertices, (2) symbols R ∈ Σ
have the same valuation in S and S′, and (3) each unary symbol U ∈ U is
evaluated as an arbitrary subset of V (S).

Finally, a first-order transduction Φ from Σ to Γ is the composition of a U-
colouring and a first-order interpretation Φ′ from (Σ∪U) to Γ. The result Φ(S)
of this transduction on a Σ-structure S is the set of all Φ′(S′) for S′ a U-
coulourings of S.

Transductions are also closed under composition, which means that trans-
ductions may equivalently be defined as the composition of any sequence of
colourings and interpretations.
Lemma 4.10. If Φ and Θ are transduction from Σ to Γ and from Γ to ∆
respectively, then Θ ◦ Φ is an transduction from Σ to ∆.

Proof. The composition of two colourings clearly is a colouring, and interpreta-
tions are closed under composition by Lemma 4.9. Finally, an interpretation Φ
followed by an U-colouring can always be rewritten as first the U-colouring,
and then applying Φ while ignoring the new unary relations. This allows to
simplify any sequence of colourings and interpretations into the canonical form
of first a colouring, then an interpretation.

Let us give some examples.

• There is a transduction Ψ which given a graph G, yields the set Ψ(G) of
all induced subgraphs of G: the colouring extends G with a single unary
predicate U which amounts to picking an arbitrary subset U(G) ⊂ V (G).
Then, the interpretation deletes vertices outside U(G) (with the domain
formula ψV (x) = U(x)), while keeping edges unchanged (with the edge
formula ψE(x, y) = E(x, y)).

• In the introduction, we mentioned that there is an interpretation Φ,
namely squaring, such that any G is an induced subgraph of Φ(G(1)),
where G(1) is the 1-subdivision of G. Define Φ′ = Ψ ◦ Φ: using Ψ
to retrieve an arbitrary induced subgraph in the result of Φ, we find
that G ∈ Φ′(G(1)) for any graph G.

• Define Φ′′ = Ψ ◦Φ ◦Ψ: we can now pick an induced subgraph before and
after the squaring step. Notice that if H is a (non-induced) subgraph
of G, then H(1) is an induced subgraph of G(1). It follows that for any
subgraph H of G, H ∈ Φ′′(G(1)). In particular, for G = Kn the clique
on n vertices, Φ′′(K

(1)
n ) contains all graphs on at most n vertices.
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Notice from these examples that when constructing a transduction Φ, we
might care about finding a specific graph H inside Φ(G), but are not bothered
by Φ(G) containing other, unwanted graphs. This can be thought of as pre-
tending that the non-deterministic colouring always makes the choice which is
most convenient for us.

If in a different context, these spurious results in Φ(G) had to be removed,
one could add to the transduction a check operation which aborts it if a given
formula ϕc is not satisfied as a result of unwanted non-deterministic choices.

Let us finally mention that it is common to add a copying operation to
transductions: given a structure S it creates a new copy of S, and adds as a
new relation a matching joining each vertex x ∈ V (S) to its new copy; plus
a unary predicate indicating whether a vertex comes from S or from its copy.
This allows a transduction Φ to produce an output Φ(S) larger (although only
linearly so) than its input. It can be shown that whether or not copying is
allowed is irrelevant for the key notion of independence presented in the next
section, which is why we choose to ignore it. All results on transductions
presented in this work hold both with and without copying.

4.2.5 Independence. If C,D are classes of Σ and Γ-structures respectively,
we say that C interprets, respectively transduces D if there is an interpretation,
resp. transduction Φ such that D ⊆ Φ(C) (where in the case of transductions,
Φ(C) =

⋃
S∈C Φ(S)). One can think of this as an encoding of structures of D

with structures of C, where the decoding function C → D can be expressed
in first-order logic. On the other hand, no assumption is made on the encod-
ing D → C.

The case where D is the class G of all graphs is of utmost importance:
a class C of structures is called monadically independent if C transduces G.
Intuitively, this means that C is as complex (up to a first-order decoding) as
the class of all graphs. This is as complex as it gets, as G interprets all classes
of relational structures.
Lemma 4.11. For any relational signature Σ, the class G of all graphs inter-
prets the class of all Σ-structures.

Proof. Let Σ = {R1, . . . , Rk}. Given a Σ-structure S, construct the graph G
with vertices V (S)⊎R1(S)⊎· · ·⊎Rk(S), where the vertex (x1, . . . , xr) ∈ Ri(S)
is adjacent to x1, . . . , xr.

Now the following transduction (independent of S) reconstructs S from G:
first guess with a colouring for each vertex of G whether it comes from V (S),
R1(S), etc. The domain formula discards all vertices outside V (S). Now a
tuple (x1, . . . , xr) is in Ri(S) if and only if G contains a vertex from Ri(S)
adjacent to x1, . . . , xr. This is a first-order formula which recontructs Ri(S)
from G.

Finally, one can remove the colouring step of this transduction by adding
to each vertex of G a small gadget which encodes the set it comes from.

A class C which is not monadically independent is called monadically de-
pendent, or monadically NIP (for Non Independence Property). While an
independent class is complex (as complex as the class of all graphs), a NIP
class is in a sense simple.
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The reader will certainly have noticed that we defined monadic independ-
ence, hinting at a non-monadic variant. Monadicity here refers to the non-
deterministic colouring step. Roughly, a class C is non-monadically independ-
ent if it interprets (as opposed to tranduces) the class of all graphs, but for
a stronger notion of interpretation which can manipulate tuples of vertices of
the input structure. Fortunately, it turns out that the distinction is irrelevant
thanks to the following recent and remarkable result:
Theorem 4.12 (Braunfeld and Laskowski [26]). A hereditary class C of struc-
tures is NIP if and only if it is monadically NIP.

Since we will only care about hereditary classes, we can safely ignore the
difference between NIP and monadically NIP: we will always use the monadic
definition (i.e. with transductions), while simply calling it NIP.

With this vocabulary matter out of the way, let us present some examples.

• The class
{
G(1) | G graph

}
of subdivided graphs is independent: it trans-

duces all graphs through the squaring interpretation, as argued in the
previous section.

• Any class C of graphs with bounded cliquewidth is NIP. Indeed one can
show that transductions preserve bounded cliquewidth: for any trans-
duction Φ, the image Φ(C) also has bounded cliquewidth, hence does not
contain all graphs (this is true more generally for monadic second-order
transductions).

• Adler and Adler proved that a class C of graphs closed under subgraphs
is NIP if and only if it is nowhere dense [1] by adapting an older result on
infinite graphs of Podewski and Ziegler [81]. This was later generalised
to arbitrary relational structures [25].

Remark how these examples of NIP classes coincide with the FPT al-
gorithms for model checking presented in section 4.2.4. This motivates the
conjecture which closed the introduction of this chapter.
Conjecture 4.5 [48, Conjecture 8.2]. A hereditary class C has an FPT first-
order model checking algorithm if and only if it is NIP.

The simpler implication in Conjecture 4.5 is that independent classes do
not admit FPT model checking. Even this is deceivingly difficult: the following
false proof is enlightening. Consider an independent class of structures C: there
is a transduction Φ such that Φ(C) is the class G of all graphs. Suppose that
there is an FPT algorithm for model checking in C; we use it to solve model
checking in G, contradicting Assumption 4.7. Given a graph G and a formula ψ,
and want to test if G |= ψ. By assumption, there is a preimage S ∈ C such
that G ∈ Φ(S), and by backward translation, we have G |= ψ if and only
if S |= ψ ◦ Φ; the latter can be tested using the algorithm for C.

There are two errors here:

• The first and minor issue is that backwards translation only works with
interpretations, not transductions: in Φ(S) there might be some graphs
which satisfy ψ and others which do not, in which case there can be no
reasonable definition of Φ ◦ ψ. What we would really prove is that there
is no FPT algorithm for model checking of colourings of C, which would
still be interesting.
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• The major issue is that we have no control over the encoding of G into the
structure S ∈ C. A priori, S may be arbitrarily larger than G, in which
case testing S |= ψ ◦Φ would becomes prohibitively costly. Worse, there
is no guarantee that the function constructing S from G is computable,
let alone efficiently so. Thus the supposed model checking algorithm in G
we just constructed might not even be computable.

Let us fix the proof by adjusting the definition: given classes of struc-
tures C,D, we say that C efficiently interprets D if there is an interpretation Φ
and a polynomial algorithm which given T ∈ D finds S ∈ C satisfying T ∈ Φ(S).
With this stronger hypothesis, the previous argument becomes correct and
yields the following.
Lemma 4.13. If C efficiently interprets D, then there is an FPT reduction
from model checking in D to model checking in C.

And together with Theorem 4.6,
Corollary 4.14. If C efficiently interprets the class of all graphs, then first-
order model checking in C is AW[∗]-complete.

4.3 Twin-width and first-order logic

Let us finally explain how twin-width relates to the logical notions introduced
in this chapter. First, we will generalise twin-width to relational structures
beyond graphs; this will be essential in Chapters 5 and 6.

A relational signature Σ is called binary if all relations in Σ have arity 2. By
extension, a structure is binary if its signature is binary. Binary structures turn
out to be the most natural setting in which to define twin-width. Consider a
binary structure S with signature Σ, a partition P of V (S), two partsX,Y ∈ P,
and a symbol R ∈ Σ. The partsX,Y are homogeneous for the binary relation R
if either all or none of the pairs (x, y) ∈ X ×Y are in R(S), and symmetrically
all or none of (y, x) ∈ Y × X are in R(S). Otherwise, X and Y are in error
for R. For instance:

• When the relation is symmetric, we retrieve the notion of errors from
Chapter 2.

• When the relation is a linear order <, X,Y are homogeneous if and only
if X < Y or Y < X (one part is entirely before the other).

• When R is the set of arcs of tournament, meaning that for any ver-
tices x ̸= y, exactly one of the arcs (x, y) and (y, x) belongs to R,
then X,Y are homogeneous if and only if all arcs are oriented from X
to Y , or all from Y to X.

Finally, two parts X,Y ∈ P are in error if they are in error for any of the
relations R ∈ Σ. The remainder of the definition is then as in graphs: the
error degree of X is the number of parts in error with X, the width of the
contraction sequence is the maximum error degree, and the twin-width is the
minimum width of a contraction sequence.

We can finally state the two main results relating twin-width and first-order
logic. The first, announced in section 2.4, is a model checking algorithm.
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Theorem 4.15 [19]. There is an algorithm which given a binary structure S,
a contraction sequence of width k for S, and a first-order formula ϕ over the
signature of S, tests whether S |= ϕ in time f(k, ϕ) · |V (S)|.

The second is a stability result under transductions.
Theorem 4.16 [19]. For any transduction Φ : Σ → Γ with Σ,Γ binary signa-
tures, there is a function f such that any Σ-structure S and T ∈ Φ(S) satisfy
tww(T ) ⩽ f(tww(S)).

This can be restated as: for classes of binary structures, if C has bounded
twin-width, then so does any transduction of C.

Since the class of all graphs does not have bounded twin-width, this implies
the following.
Corollary 4.17 [19]. Any class of binary structures with bounded twin-width
is NIP.

We will not prove Theorems 4.15 and 4.16. There are two published proofs
of them: the original proof in [19], and a reformulation by Gajarský, Pilipczuk,
Przybyszewski, and Toruńczyk [49], which replaces some combinatorial objects
with the more abstract notion of logical types, leading to several extensions of
the results.

Theorem 4.15 uses the same fundamental idea as the independent set al-
gorithm of Theorem 2.21: it is a dynamic programming algorithm which for
each part P of each partition in the contraction sequence solves a local model
checking problem within a bounded radius around P (radius being meant with
regards to the error graph distance).

The proof of Theorem 4.16 uses Theorem 3.12: one shows that any con-
traction sequence of bounded width for S also has bounded error rank for the
transduction T ∈ Φ(S). Precisely, for any part P in the contraction sequence,
one shows that after deleting parts within a bounded radius from P (where
distance is again in the error graph, and the radius depends only on the trans-
duction), the rank of P against the remainder of the graph is bounded.





Chapter 5

NOWHERE SPARSE STRUCTURES

In Chapter 3, we explained how a ‘good’ ordering of the vertices of a graph,
namely one with low grid rank, can be used as witness of twin-width: given
such an ordering, a greedy algorithm can compute a contraction sequence of
small width (see Theorem 3.9). Finding such a good order is in general an
open problem, as hard as approximating twin-width (Question 2.25).

This chapter focuses on specific relational structures S in which one can
find a candidate ordering < satisfying the converse of Theorem 3.9: if the
adjacency matrix A(S,<) has large grid-rank, then S has large twin-width.
Then, Theorem 3.9 gives an FPT approximation of twin-width. We present two
examples: ordered structures where the candidate order < is part of S itself,
and tournaments, an interesting generalisation of linear orders. Both have a
sufficiently rigid structure to ensure that any high-rank division in A(S,<)
forbids any low-width contraction sequence.

In addition to this FPT approximation, we will show that several of the re-
markable properties of twin-width presented in the previous chapters become
characterisations: having bounded twin-width is equivalent to being small
(cf. Theorem 3.37), having FPT first-order model checking (cf. Theorem 4.15),
and to being NIP (cf. Corollary 4.17). Remark that these equivalence do not
hold for graphs: the class of cubic graphs has unbounded twin-width (Co-
rollary 3.39), but is well-known to be NIP and have an FPT model checking
algorithm [85]; separating small classes from bounded twin-width will be the
main result of Chapter 7.

These results on ordered structures were proved by Bonnet, Giocanti, Os-
sona de Mendez, Simon, Thomassé, and Toruńczyk in [17], a significant part
of which was already presented as Theorem 3.9 in Chapter 3. They were gen-
eralised to tournaments by Thomassé and the author in [51].

5.1 Definitions and preliminaries

This section introduces the different kinds of relational structures considered
in this chapter.

Adjacency matrices We will use adjacency matrices of binary relational
structures. If R ⊆ V 2 is a binary relation and < is an ordering of V , then the
adjacency matrix A(R, V ) has V for set of columns and rows ordered by <, and
contains a ‘1’ at the intersection of row x and column y if and only if (x, y) ∈ R.
Thus for a graph G = (V,E), we have A(G,<) = A(E,<).

Theorem 3.9 generalises to binary relational structures as follows.
Theorem 5.1 [17]. Let S be a binary Σ-structure and < an ordering of V (S).
There is a function f depending only of |Σ| such that if A(R(S), <) has grid
rank at most k for each R ∈ Σ, then tww(R) ⩽ f(k). Furthermore, a contrac-
tion sequence witnessing this can be computed in polynomial time.

69
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Ordered structures An ordered structure S is a relational structure whose
signature contains a distinguished binary relation symbol <, whose valuation
in S is a total order <S over V (S). For example an ordered graph (V,<,E)
consists of two binary relations, where (V,E) is a graph and< is a total ordering
of V (see Figure 5.1).

v1

v1

v1

v2

v2

v2

v3

v3

v3

v4

v4

v4v5

v5

v5

v6

v6

v6

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 5.1: Representation of an ordered graph (V,<,E), and its adjacency
matrix A(E,<). Vertices are ordered left-to-right according to <.

Ordered structures are interesting for twin-width because it is possible to
add a total order to any structure without changing its twin-width. Given a
structure S = (V,R1, . . . , Rk) and an ordering < of its vertices V , define the
structure (S,<) = (V,<,R1, . . . , Rk), i.e. S with the relation < added.
Lemma 5.2. For any binary structure S, there is an ordering < of V (S) such
that tww(S) = tww(S,<).

Proof. Choose an optimal contraction sequence for S, and take < to be an
ordering compatible with this contraction sequence. Then there are no errors
relative to the relation <, hence adding it to the structure does not change the
twin-width.

Permutations and bi-orders Another interesting example of ordered struc-
ture is bi-orders (V,<1, <2), consisting of two different linear orders on the
same vertex set. Bi-orders are a natural encoding of permutations as relational
structures: a permutation σ : [n] → [n] is encoded as ([n], <,<σ) where < is
the usual order, and i <σ j if and only if σ(i) < σ(j), see Figure 5.2.

When a bi-order (V,<1, <2) is seen as an ordered structure, either of <1

or <2 can be used as the reference order. We will study permutations and
bi-orders in more depth in Chapter 6.

Tournaments A tournament T = (V,A) is a structure consisting of a total,
irreflexive, and antisymmetric binary relation A: for any two distinct ver-
tices x, y ∈ V , exactly one of (x, y) or (y, x) belongs to A. A pair (x, y) ∈ A
is called an arc directed from x to y. Borrowing conventions from graph the-
ory, the arc is simply denoted xy, or x → y to emphasise the direction. See
Figure 5.3 for an example. If the relation A is transitive, then it is a linear
order on V , this is called a transitive tournament ; in this sense, tournaments
generalise total orders.
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Figure 5.2: The permutation σ = 15324 represented as a biorder ([5], <,<σ).
The vertices 1, . . . , 5 are ordered left-to-right by the usual order <, while the
permuted order <σ is drawn explicitly with an arc x → y whenever x <σ y.
These different representations of < and <σ are purely a matter of readability:
the two orders play similar roles in the relational structure.

Figure 5.3: Example of tournament: the rotating tournament, in which vertices
are placed on a circle and arcs are directed clockwise.

Given an ordered graph G = (V,<,E), there is a natural construction
of a tournament called the backedge tournament T : start with the transitive
tournament (V,<), and for each edge xy ∈ E, reverse the direction of the arc
between x and y in T . It is simple to check that if X,Y ⊂ V are homogeneous
in G, then they also are in T , which implies that tww(T ) ⩽ tww(G). This
is a very special case of Theorem 4.16: the transformation from G to T is a
first-order interpretation, where the arcs of T are defined by the formula

(5.1) xy ∈ A ⇐⇒ (x < y)⊕ (xy ∈ E),

where ⊕ denotes exclusive or.
The converse is false: there are ordered graphs with arbitrarily large twin-

width whose backedge tournaments are transitive, hence have twin-width 0.
Indeed consider a bi-order B = (V,<1, <2) with arbitrarily large twin-width,
and construct the permutation graph G = (V,<1, E) where xy ∈ E if and only
if <1, <2 disagree over xy, i.e. x <1 y and y <2 x or vice versa. One can show
that parts X,Y ⊂ V are homogeneous in B if and only if they are homogeneous
in G, and thus tww(B) = tww(G). However, the backedge tournament of G
is (V,<2), which is transitive, hence has twin-width 0.

5.2 Approximating twin-width in ordered structures

Theorem 3.9 states that for a graph G = (V,E) and an ordering <, if A(G,<)
has small grid rank, then G has small twin-width. The converse is false: a
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stupid choice of < may cause high grid rank even if G is a path. However, we
will show that in this case, the ordered graph (V,<,E) has large twin-width.
This is a generalisation of Lemma 3.21: the latter showed that if A(G,<) has
large grid rank then any contraction sequence compatible with < has large
width; we need to generalise this to contraction sequences with bounded error
degree with regards to <.

Given a subset X ⊂ V (G), denote by X its closure, meaning the smallest
interval of < containing X. Recall that two parts X,Y ⊂ V (G) are in error
with regards to < if and only if X intersects Y .
Lemma 5.3 [17]. Let G = (V,<,R) be an ordered binary structure of twin-
width k. Then A(R,<) has grid rank at most 2(k + 1)2 + 1.

Proof. Fix Pn, . . . ,P1 a contraction sequence of width k for the ordered struc-
ture G. Denote by M = A(R,<) its adjacency matrix, and consider for a
contradiction a rank-(2(k+1)2 +2) division D = (R, C). Note that parts in R
or C must be intervals of <, while the parts of Pi need not.

Choose the earliest step in the sequence (i.e. the largest i ∈ [n]) such that
there is a part P ∈ Pi whose closure P contains some part of either R or C,
say R ⊆ P with R ∈ R.

Call P0 = P , and let P1, . . . , Pℓ be the remaining parts of P which inter-
sect P . Since P has error degree at most k with regards to <, we have ℓ ⩽ k.
Furthermore, let Q1, . . . , Qt be the parts in error with one of the Pi for the
relation R. We have t ⩽ k · (ℓ+ 1) ⩽ k(k + 1).

Now by choice of i, for any A ∈ P\{P}, the closure A intersects at most two
parts of C, while P itself intersects at most three parts of C. Since C consists of
at least 2(k+1)2+2 parts, one of them, say C ∈ C is disjoint from all Pi and Qj ,
hence C is homogeneous to each of P0, . . . , Pℓ. Using that R ⊂ P ⊂

⋃ℓ
i=0 Pi,

it follows that

(5.2) rk(R;C) ⩽ rk

(
ℓ⋃

i=0

Pi; C

)
⩽

ℓ∑
i=0

rk(Pi;C) ⩽ k,

contradicting the hypothesis that D is a rank-(2(k + 1)2 + 2) division.

Combining Lemma 5.3 and Theorem 5.1 yields two important results.
Corollary 5.4 [17]. For any ordered binary signature Σ, there is a function f
and a polynomial time algorithm which given a Σ-structure S, computes a
contraction sequence of width at most f(tww(S)).
Corollary 5.5 [17]. Let C be a class of ordered binary Σ-structures, and A
the class of all adjacency matrices A(R(S), <S) obtained from structures S ∈ C
and relations R ∈ Σ. Then C has bounded twin-width if and only if A has
bounded grid rank.

An interesting consequence of Corollary 5.5 is that ordered structures can
be superposed while preserving bounded twin-width.
Lemma 5.6. Consider two ordered binary structures S = (V,<,R1, . . . , Rk)
and T = (V,<,Q1, . . . , Qℓ) with the same vertices and same ordering, and
construct the structure S + T = (V,<,R1, . . . , Rk, Q1, . . . , Qℓ) by combining
the relations of S and T . Then tww(S+T ) is bounded by a function of tww(S)
and tww(T ).
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Proof. By Corollary 5.5, the grid rank of all the adjacency matrices A(Ri, <)
and A(Qj , <) is bounded by functions of tww(S) and tww(T ) respectively. By
Corollary 5.5, the twin-width of S + T is bounded by a function of the former
grid ranks.

This is particularly useful for permutations, where this superposition cor-
responds to composition:
Corollary 5.7. Let C1, C2 be classes of permutations represented as bi-orders,
and C = C1 ◦ C2 the class of all compositions σ ◦ τ , σ ∈ C1, τ ∈ C2 when it is
well-defined. If C1, C2 have bounded twin-width, then so does C.

Proof. Given permutations σ ∈ C1, τ ∈ C2, consider the encodings as bi-orders
σ = ([n], <,<σ) and τ−1 = ([n], <,<τ−1). Using Lemma 5.6 to superpose them
along the standard ordering <, we obtain that the bi-order ([n], <τ−1 , <σ) has
twin-width bounded by a function of tww(σ), tww(τ). It is simple to check
that ([n], <τ−1 , <σ) is isomorphic to the encoding of the composition σ ◦ τ .

5.3 Approximating twin-width in tournaments

We will now extend the results of the previous section to tournaments. The
fundamental idea remains the same: for any tournament T , there is an order-
ing < such that tww(T ) is functionally equivalent to the grid rank of A(T,<).
For ordered structures, the ordering < was already given; for tournaments, we
need to construct it.

5.3.1 Binary search trees. The following construction is inspired by the
classical algorithmic data structure called binary search trees, used to store ele-
ments of a linear order: this version instead contains vertices of a tournament.
Interestingly, this exact construction was used in a different context by Ailon,
Charikar, and Newman [3]: when randomized, it yields an approximation al-
gorithm called kwiksort for the feedback arc set problem in tournaments. Our
analysis of the construction is however entirely different from theirs, and does
not require randomisation.

Consider a tournament T . Given a vertex x ∈ V , its out-neighbourhood
is N+

T (x) = {y ∈ V (T ) | x→ y}, and symmetrically its in-neighbourhood is
N−

T (x) = {y ∈ V (T ) | y → x}. Remark that {x}, N+
T (x), N−

T (x) is a partition
of V (T ). A binary search tree (BST) in T is a rooted ordered binary tree S
(meaning that each node has a left and right child, either of which may be
missing), whose nodes are the vertices of T , and such that for any x ∈ S

• the left child of x (if any) and its descendants are in N−
T (x), and

• the right child of x (if any) and its descendants are in N+
T (x),

see Figure 5.4. In the classical notion of BST over a linear order, the whole
left subtree of x is smaller than the whole right subtree. There is no such
restriction for tournaments: edges between the left and right child of x or their
respective descendants can have arbitrary orientations.

The ordering associated with S, denoted <S , is the left-to-right order, i.e.
the one which places a node x after its left child and its descendants, but before
its right child and its descendants. Such an order is called a BST order. A
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Figure 5.4: A binary search tree in a tournament. The direction of omitted
edges is not constrained.

tournament T in general admits many different BST orders, and any of them
will be appropriate for our purpose. Constructing one in polynomial time is
easy.

Note that if x is an ancestor of y, then there is an edge oriented from x to y
if and only if x <S y. Thus we have

Remark 5.8. In a tournament T , any branch B of a BST S forms a transitive
subtournament T [B], whose order coincides with <S . That is, for x, y ∈ B, we
have x→ y if and only if x <S y.

In the remainder of this section, we will prove the following.
Theorem 5.9 [51]. There is a function f such that for any tournament T and
BST order <S, the grid rank of A(T,<S) is at most f(tww(T )).

Similarly to ordered structures, Theorem 5.9 combined with Theorem 5.1
yields an approximation algorithm and a characterisation of bounded twin-
width for tournaments.
Corollary 5.10 [51]. There is a function f and a polynomial algorithm which
given a tournament T , finds a contraction sequence of width at most f(tww(T )).
Corollary 5.11 [51]. Let C be a class of tournaments, and A the class of all
adjacency matrices A(T,<S) for all T ∈ C and BST order <S in T . Then C
has bounded twin-width if and only if A has bounded grid rank.

5.3.2 Chain orders. Our goal is now to show that if <S is a BST or-
der for T and A(T,<S) has large grid rank, then T has large twin-width. To
this end, we will extract a small subtournament T ′ ⊂ T such that the re-
striction (T ′, <S) can be obtained by first-order transduction from T , while
ensuring that A(T ′, <S) still has large grid rank, thereby reducing the problem
to Corollary 5.5.

The first-order transduction uses a variant of lexicographic orderings defined
below. The transduction actually constructs a quasi-ordering ⪯ (i.e. there can
be equivalent vertices: x ⪯ y and y ⪯ x); and we latter extract a subset of
vertices on which ⪯ is a total ordering.

In a tournament T , say that a subset C ⊂ V (T ) is a chain if it induces a
transitive subtournament T [C]. The chain quasi-order ⪯+

C is defined as follows.
First enumerate the vertices of C as c1, . . . , ck so that ci → cj whenever i < j.
Define Ai =

⋂
j⩽iN

+(cj), and Bi = Ai−1 ∩N−(ci). Then each of B1, . . . , Bk

and Ak is an equivalence class of ⪯+
C , and the classes are ordered as

B1 ≺+
C c1 ≺+

C B2 ≺+
C c2 ≺+

C . . . Bk ≺+
C ck ≺+

C Ak,
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Figure 5.5: Example of construction of the quasi-order ⪯+
C . The quasi-order

is from left to right, and the triangles are equivalence classes. The direction of
omitted edges (from Bi to Bj ∪ {cj} for i < j) is not constrained. For ⪯−

C , the
direction of all edges would be reversed.

see Figure 5.5. This can be seen as the left-to-right order of a partial BST
consisting only of a single branch c1, . . . , ck, with c1 as root and ck as leaf.

The dual quasi-order ⪯−
C is defined in the same way, but reversing the

direction of all edges. Thus, we now enumerate C so that edges are from ci
to cj when i > j, while Ai =

⋂
j⩽iN

−(ci) and Bi = Ai−1 ∩N+(ci). The rest
of the definition is the same.
Lemma 5.12. There is a transduction Φ such that for any tournament T and
chain C in T , we have (T,⪯+

C) ∈ Φ(T ).

Proof. The transduction Φ first uses a colouring step to guess the chain C. De-
pending on this non-deterministic choice, it may yield any chain quasi-ordering.
The remainder of Φ is a deterministic interpretation.

Having guessed C, the ordering ⪯+
C restricted to C is simply given by the

orientation of edges. Enumerate C as {c1 ⪯+
C . . . ⪯+

C ck}. Given x ̸∈ C, let
i(x) ∈ {0, . . . , k} be maximal such that there are edges oriented cj → x for
all 1 ⩽ j ⩽ i(x). Then

• for any x ̸∈ C, we have c1 . . . ci(x) ⪯+
C x ⪯+

C ci(x)+1, . . . , ck, and
• for x, y ̸∈ C, we have x ⪯+

C y if and only if i(x) ⩽ i(y).

This characterisation of ⪯+
C can be expressed by a first-order formula.

5.3.3 Extraction. We now come to the main technical result of this sec-
tion: from a BST order with very large grid rank, we extract a chain order
with large grid rank.

Relative to a quasi-ordering ⪯, we say that two subsets X,Y are non-
overlapping if either X ≺ Y (all points in X are strictly smaller than all those
in Y ) or Y ≺ X.
Lemma 5.13 [51]. Let T be a tournament and S be a BST with associated
order <S. There is a function f(k) = 2O(k) independent of T and S satisfying
the following. For any family P of at least f(k) disjoint intervals of <S, there
is a chain C in T , an orientation o ∈ {+,−} and a subfamily P ′ ⊂ P such
that |P ′| ⩾ k and such that the parts of P ′ are non-overlapping for ⪯o

C .
Furthermore, C, o, and P ′ can be computed in linear time.

Proof. Let T be a tournament, S a BST of T and <S the corresponding order.
Consider a family P of at least f(k) disjoint intervals of <S , where f(k) = 2O(k)

will be determined later.
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We choose a branch B = b0, . . . , bp of S by the following process. First b0
is the root of S. For each (yet to be determined) bi, let Si be the subtree of S
rooted in bi, and define the weight wi to be the number of classes of P inter-
sected by Si. Then bi+1 is chosen to be the child of bi which maximizes wi+1.
This choice ensures that

(5.3) 2wi+1 + 1 ⩾ wi.

For each i < p, let di be the child of bi other than bi+1 (sometimes di does
not exist), and let Di be the subtree of S rooted at di (Di is empty if di does
not exist). Furthermore, let L,R be the sets of vertices which are before, resp.
after the leaf bp in the order <S . For any 0 ⩽ i ⩽ j ⩽ p, let

Li,j =
⋃

i⩽ℓ<j
bℓ∈L

{bℓ} ∪Dℓ, and Ri,j =
⋃

i⩽ℓ<j
bℓ∈R

{bℓ} ∪Dℓ.

Roughly speaking, Li,j , resp. Ri,j consists of subtrees branching out of B on
the left, resp. right, between bi and bj .
Claim 5.14. For any i, j, the subtree Si is partitioned into Li,j <S Sj <S Ri,j .

Proof. Clearly Li,j , Sj , Ri,j partition Si. Furthermore, if ℓ < j and bℓ ∈ L,
then bℓ <S Sj , and in turn Dℓ <S bℓ. This proves Li,j <S Sj , and symmetric-
ally Sj <S Ri,j . ■

Claim 5.15. For 0 ⩽ i < j ⩽ p, if wi ⩾ wj +3, then there is a part P ∈ P such
that P ⊂ Li,j or P ⊂ Ri,j .

Proof. There are at least three parts of P which intersect Si but not Sj . Since
these three parts and Si are all intervals of <S , one of these parts, say P , is
contained in Si. Thus P is a subset of Si but does not intersect Sj , which using
Claim 5.14 implies that P ⊂ Li,j or P ⊂ Ri,j . ■

Construct a sequence i0 < · · · < i2k of indices in {0, . . . , p} inductively by
taking i0 = 0, and choosing iℓ+1 minimal such that wiℓ+1

⩽ wiℓ−3. Using (5.3)
and the minimality of iℓ+1, we obtain for all ℓ that

2wiℓ+1
+ 1 ⩾ wiℓ+1−1 > wil − 3,(5.4)

hence 2wiℓ+1
+ 3 ⩾ wil .(5.5)

We now define f by f(0) = 1 and f(k + 1) = 4f(k) + 9. By assumption,
w0 = |P| ⩾ f(k), and it follows from (5.5) that the construction of iℓ can be
carried out up to at least i2k.

Define L′
ℓ = Liℓ−1,iℓ , and similarly R′

ℓ = Riℓ−1,iℓ , see Figure 5.6. By
Claim 5.15, for any ℓ ∈ [2k], either L′

ℓ or R′
ℓ contains a part of P. Thus,

either there are at least k distinct L′
ℓ containing a part of P, or there are at

least k distinct R′
ℓ containing a part of P. Without loss of generality, assume

that we are in the former case. We will now forget about vertices which are
not in L.

Define C = L ∩ B. By Remark 5.8, this is a chain, whose order coincides
with <S . Furthermore, at any node x of C, the branch B does descend on
the right side, since x <S bp. Thus, the order in C also coincides with the
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Figure 5.6: Sketch of the proof of Lemma 5.13. In the upper half, the BST T
with the extracted branch B; circled in red, the extracted subsequence biℓ ; in
green arrows, the chain C = B ∩ L = {b2, b4, b5, b6}. Below the tree, from top
to bottom: the partition in L′

ℓ and R′
ℓ; the initial family (here partition) P,

with the parts contained in some L′
ℓ or R′

ℓ highlighted; the final family P ′,
obtained by selecting a part of P inside each possible L′

ℓ.

ancestor–descendent order of S. (Remark here that if we were in R instead
of L, the order of C would be the inverse of the ancestor–descendant order.)
Now, if C is enumerated as c0 <S · · · <S ct, and Ci is the subtree branching
out on the left of ci, defined similarly to Di, then the chain quasi-order ⪯+

C

restricted to L is exactly

C0 ≺+
C c0 ≺+

C C1 ≺+
C c1 ≺+

C . . . ≺+
C ct

where each subtree Ci is an equivalence class. (In R, we would instead use ⪯−
C .)

From this description, we obtain that any Li,j is an interval of ⪯+
C restricted

to L.
For each L′

ℓ, select a part of P included in L′
ℓ if any, and define P ′ as the

collection of selected parts. Thus P ′ ⊂ P, and we know from the choice of
the family {L′

ℓ}ℓ∈[2k] that |P ′| ⩾ k. Furthermore, if X ̸= Y are parts of P ′,
there are s ̸= t such that X ⊆ L′

s and Y ⊆ L′
t. Since each L′

ℓ is an interval
of (L,⪯+

C), this implies that X and Y are non-overlapping for ⪯+
C . Thus P ′

satisfies all desired properties.
Finally, given the BST S and the family P, it is routine to compute the

weights wi of all nodes in S by a bottom-up procedure; this only requires to
compute the left-most and right-most parts of P intersecting each subtree.
From this, it is simple to choose in linear time the branch B, the indices iℓ, the
better side L or R, and finally to compute C and P ′.
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5.3.4 Characterisation of twin-width in tournaments. We are almost
ready to prove Theorem 5.9. The last lemma needed is used to extract one
element from each class of a chain quasi-order while preserving high grid-rank.
Lemma 5.16. Given a rank-k division (R, C) in a matrix M , one can extract
a full-rank k × k submatrix M ′ which contains exactly one row (resp. column)
from each part R ∈ R (resp. C ∈ C).

Proof. Let R = {R1, . . . , Rk} and C = {C1, . . . , Ck} be the blocks of the di-
vision. Suppose we have already extracted one row (resp. column) from each
of R1, . . . , Rk−1 (resp. C1, . . . , Ck−1) to form a submatrix Mk−1 of rank k− 1.
Add all rows of Rk and all columns of Ck to Mk−1. This matrix has rank
at least k because it contains Rk × Ck. Thus we can remove all but one row
of Rk while preserving rank k, then similarly remove all but one column of Ck,
yielding the desired matrix M ′.

Lemma 5.17. Given a rank-(k3) division (R, C) in a matrix M , one can ex-
tract a submatrix M ′ with grid rank at least k which contains exactly one row
(resp. column) from each part R ∈ R (resp. C ∈ C).

Proof. Let R = {R0 < · · · < Rk3−1} and C = {C0 < · · · < Ck3−1} be the blocks
of the division. We will use two levels of coarser partitions, regrouping blocks k
by k: define the partition R′ with parts R′

i = Rki ∪ · · · ∪Rk(i+1)−1 for i < k2,
and R′′ with parts R′′

i = R′
ki∪· · ·∪R′

k(i+1)−1 for i < k, and similarly C′ and C′′.
Thus the partitions R′, C′ have k2 parts each, while R′′, C′′ have k parts each.

Now for each i, j ∈ [k], we consider the submatrix R′
ki+j × C ′

kj+i. It has a
rank-k division given by (R, C), hence by Lemma 5.16, we can extract from it a
rank-k submatrix Mi,j using only one row or column from the relevant blocks
of R and C. We discard the rows of R′

ki+j and C ′
kj+i which are not used in Mi,j :

they will not be used elsewhere. Applying the above for each i, j ∈ [k] yields a
submatrix M ′ of M containing exactly one row (resp. column) from each part
of R (resp. C), as required. Consider the restriction of (R′′, C′′) on M ′: the
zone R′′

i × C ′′
j contains the submatrix Mi,j , hence has rank at least k. This

shows that (R′′, C′′) induces a rank-k division in M ′.

We are now ready to characterise twin-width of tournaments.

Proof of Theorem 5.9. Consider a tournament T with twin-width k, and a BST
order <S such that A(T,<S) has a rank-t division D = (R, C). We want to
bound t by a function of k.

By dropping half of the parts in R, and half of those in C, we can assume that
they do not intersect: Indeed, for t1 = ⌊t/2⌋, if R = {R1 <S · · · <S Rt} and
C = {C1 <S · · · <S Ct}, then either Rt1 <S Ct−t1+1 in which case R1, . . . , Rt1

are disjoint from Ct−t1+1, . . . , Ct, or Ct1 <S Rt−t1+1 and vice versa. Either
way, we find t1 parts of R disjoint from t1 parts of C.

Choose t2 maximal satisfying t1 ⩾ f(t2), where f is the bound given by
Lemma 5.13. We then apply Lemma 5.13 to R and to C independently. This
yields subfamilies R′ ⊂ R and C′ ⊂ C each of cardinality t2, as well as chain
quasi-orders ⪯1 and ⪯2 such that parts in R′ (resp. C′) are non-overlapping
for ⪯1 (resp. ⪯2).

Call X =
⋃

R∈R′ R and Y =
⋃

C∈C′ C the sets of rows and columns remain-
ing in R′ and C′. Consider the adjacency matrix of T restricted to rows in X
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and columns in Y ordered by ⪯1 and ⪯2 respectively, with ties in the quasi
orderings broken arbitrarily. In this matrix, (R′, C′) is a rank t2 division. By
Lemma 5.17, we can extract subsets X ′ ⊂ X and Y ′ ⊂ Y such that the submat-
rix on X ′ × Y ′ contains a rank-t3 division for t3 =

⌊
3
√
t2
⌋
, and X ′ (resp. Y ′)

intersects each part of R′ (resp. C′) at most once. Recall that Lemma 5.13
ensures that the parts of R′ and C′ are non-overlapping for ⪯1 and ⪯2 respect-
ively. The above implies that ⪯1 restricted to X and ⪯2 restricted to Y are
total orderings.

Finally, let T ′ be the subtournament induced by X ∪ Y , and define the
ordering < of its vertices to coincide with ⪯1 inside X and with ⪯2 inside Y ,
while X < Y . By construction, A(T ′, <) has grid rank at least t3. Fur-
thermore, it follows from Lemma 5.12 that there is a fixed transduction Φ
such that (T ′, <) ∈ Φ(T ). Thus, by Theorem 4.16, there is some function g
such that tww(T ′, <) ⩽ g(tww(T )). Call k′ = tww(T ′, <). Finally, ap-
plying Lemma 5.3 to the ordered structure (T ′, <) yields that its grid rank
is t3 ⩽ 2(k′ + 1)2 + 1.

Combining the inequalities on t, t1, t2, t3, k′, and k throughout the proof, we
find that the grid rank t is bounded by some function of the twin-width k.

5.3.5 Structures over tournaments. Theorem 5.9 only considers tour-
naments, but it can be extended to binary structures over tournaments, that
is structures of the form S = (V,A,R1, . . . , Rk) where (V,A) is a tournament
and Ri are arbitrary binary relations. In a sense, the tournament (V,A) in S
plays a role comparable to the ordering in an ordered structure: its presence
constrains twin-width sufficiently to approximate it.

Given a structure S = (V,A,R1, . . . , Rk), we call BST order in S any BST
order of the tournament (V,A).
Theorem 5.18 [51]. Let C be a class of binary structures over tournaments,
and A the class of all adjacency matrices A(R(S), <) for structures S ∈ C,
relations R in its signature, and BST orderings <. Then C has bounded twin-
width if and only if A has bounded grid rank.

Sketch of proof. If A has bounded grid rank, then Theorem 5.1 applied to BST
orders of structures in C implies that C has bounded twin-width.

The converse is a simple variant of the proof of Theorem 5.9: consider S ∈ C
with a BST order <, and a relation R in its signature such that A(R(S), <)
has a very high rank division. Lemmas 5.13 and 5.17 allow to extract a smaller
division whose parts rows and columns are ordered by some chain orders, and
from this, Lemma 5.12 yields through a first-order transduction an ordered
structure with high grid rank.

5.4 Extracting canonical obstructions

In the previous sections, we proved that the lack of high-rank divisions in ap-
propriate orderings characterises bounded twin-width for ordered structures
and tournaments: high-rank divisions are the only obstructions to twin-width.
Our goal is now to clean up these obstructions to obtain some canonical form
thereof. Using these canonical obstructions, we will be able to prove the con-
verses of Theorems 3.37 and 4.15 and Corollary 4.17:
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Theorem 5.19 [17, 51]. Let C be a hereditary class of ordered structures or
tournaments. Then the following are equivalent:

1. C has bounded twin-width,
2. C is a small class,
3. C has an FPT first-order model checking algorithm, and
4. C is NIP.

Where equivalence with (3) is under the FPT ̸= AW[∗] assumption.
We know from the previous chapters that bounded twin-width implies all

other conditions in Theorem 5.19 (using the approximation algorithms from
Corollaries 5.4 and 5.10 for the FPT algorithm). The part we need to prove,
which is specific to ordered structures and tournaments, is that classes with
unbounded twin-width cannot satisfy the other conditions. This proceeds in
two steps: find the canonical form of obstructions found as induced substruc-
ture in the structures with large twin-width, and show that these obstructions
do not satisfy conditions (2)–(4).

The extraction of canonical obstructions is a tedious process, involving re-
peated use of Ramsey’s theorem and similar results. We will thus omit this part
of the proof, and instead focus on the obstructions themselves. A few different
forms of obstructions appear for both ordered structures and tournaments, but
they all share a commonality: they are encodings of arbitrary permutations.
That is, a class has unbounded twin-width if and only if it contains encodings
of all permutations, for one of the encodings which we will describe. Since our
goal is to show that these encodings of permutations do not satisfy (2)–(4), it
is natural to first prove it for the permutations themselves.

5.4.1 Permutations as obstructions. Recall that we encode permuta-
tions as biorders: the superposition of two total orderings of the same vertex
set. Call B the class of all biorders, which we want to show to be complex in
the sense of enumeration and first-order logic. The former is very simple:
Fact 5.20. The class of all biorders B is not small (and a fortiori not tiny).

Proof. Up to isomorphism, there are exactly n! biorders on n vertices. When
counting labelled biorders, the labelling encode a second permutation, hence
they are (n!)2 biorders on the vertex set [n] counted up to equality.

We now focus on the latter: the class B is independent (in the sense of
first-order logic). That is, one can encode all graphs in B, so that the decoding
is a first-order interpretation. We will additionally show that this is an effi-
cient interpretation (the encoding function is polynomially computable), which
implies that first-order model checking in B is hard.
Lemma 5.21 (Folklore). The class B efficiently interprets all graphs.

Proof. Consider a graph G = (V,E) and let us describe its encoding as a
biorder BG = (X,<1, <2). The vertex set X consists of the following:

• the vertices V of G,
• for each edge e = uv in E, three vertices ue, ve, se, where ue, ve can be

seen as half-edges, while se is a separator, and
• two additional separators s1, s2.
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Figure 5.7: Encoding of a graph G as a biorder (X,<1, <2). Each of the two
orderings <1, <2 of the encoding is depicted by listing vertices left-to-right.
Vertices are color-coded for readability only: vertices from G in blue, half-
edges in green, edge separators in white, special separators in black.

The orderings are as follows (see Figure 5.7):

1. In <1, V comes first, followed by the separator s1. Then, for each
edge e ∈ E, the vertices se, ue, ve in that order (up to swapping u and v),
and finally s2.

2. In <2, all the vertices se, e ∈ E come first, followed by the separator s2.
Then come V and all the half-edges ue, ve, with the only constraint that
each half-edge ue is located after u, but before the next vertex of V .
Finally s1 is the last vertex for <2.

Clearly this encoding can be computed in polynomial time given G. The de-
coding proceeds as follows, given BG:

1. Firstly s1, s2 are immediately identified as the last vertices of <2, <1

respectively.

2. Using s1, s2, one can identify the type of all remaining vertices of BG:
the vertices from G are the ones before s1 in <1, the separators se are
before s2 in <2, and everything else is a half-edge.

3. In <1, the two half edges ue, ve of each edge e = uv are next to each other,
with separators on either side. This allows to reconstruct the pairing of
half-edges.

4. Finally, in <2 the half-edges incident to u are the ones located after u
but before the next vertex of G. This allows to reconstruct the vertex–
half-edge incidence.

5. From the vertex–half-edge incidence, and the pairing of half-edges, it is
simple to reconstruct the graph.
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Each of the above steps is easily expressed in first-order logic, thus resulting in
a first-order interpretation which reconstructs G from BG.

Thus, using we obtain,

Corollary 5.22. The class B of all biorders is independent.

And using Corollary 4.14,

Corollary 5.23. First-order model checking in the class B is AW[∗]-complete.

5.4.2 Obstructions in ordered graphs. We now come back to the ques-
tion of extracting obstructions: in an ordered graph (V,<,E) whose adjacency
matrix M = A(E,<) contains a high-rank division, we want to extract some
encoding of permutations.

As an example, let us demonstrate the process in the case of graphs with
bounded degree. There, we obtain the most common encoding of permutations
as matrices: the permutations matrix of σ : [n] × [n] is the matrix with [n] as
rows and columns (in the natural order), and a ‘1’ at the intersection of column i
and row j when j = σ(i). Remark that a matrix is a permutation matrix if
and only if every row and column contains a single ‘1’.

Lemma 5.24. Let M be a class of matrices with at most d ‘1’s per row or
column, and containing arbitrarily high rank divisions. Then M contains as
submatrices all permutation matrices.

Proof. Assume that each row and column of M contains at most d ‘1’s, and
furthermore that M contains a rank-k division (R, C). We in fact only need
this division to be a grid (each cell contains a ‘1’). In order to transform it into
a permutation matrix, we will first extract a submatrix satisfying the following:

(5.6) in each column c, all the ‘1’s belong to the same block of rows R ∈ R,

and symmetrically for rows and blocks of columns.

Claim 5.25. There is a submatrix M ′ of M on which (R, C) induces a k1/4

(d+1)3/2
-

grid satisfying (5.6).

Proof. Fix k′ =
√
k

d+1 . Firstly, we will not need most of the blocks of columns
from C: we delete all but k′ of them. Then, a block R ∈ R of rows contains k′
cells. In each of these, we pick a ‘1’ ensuring that the cell is non-zero, and we
discard the rows of R which do not contain one of the k′ picked cells. Thus, we
can assume that each block R ∈ R contains at most k′ rows, hence at most d·k′
entries ‘1’.

Say that two blocks R,R′ ∈ R are in conflict if there is a column c contain-
ing both a ‘1’ in R, and one in R′, violating (5.6). One can represent conflicts
as a graph on vertex set R, whose degree is at most d2 · k′ (each ‘1’ in R can
result in at most d conflicts). Thus we have a graph on |R| = k vertices with
degree at most d2 ·k′; a greedy process finds an independent set of size k

d2·k′+1 .
If we delete all blocks outside this independent set, we obtain a submatrix sat-
isfying (5.6) for columns and blocks of rows. The number of remaining blocks



5.4. EXTRACTING CANONICAL OBSTRUCTIONS 83

of rows is

k

d2 · k′ + 1
=

k
d2

d+1

√
k + 1

(5.7)

⩾
k

(d+ 1)
√
k
= k′(5.8)

Symmetrically, we apply the same process to ensure that (5.6) is also sat-
isfied by rows and blocks of columns. After this second iteration, the number
of blocks in the division is

■(5.9)
√
k′

d+ 1
=

k1/4

(d+ 1)3/2
.

Thus, from M we obtain a submatrix M ′ with a k′-grid satisfying (5.6),
where k′ grows to infinity together with the initial grid size k. We can now
extract from M ′ the permutation matrix of any permutation σ on k′ elements.
Number the blocks in M ′ as R1, . . . , Rk′ for the rows and C1, . . . , Ck′ for the
columns. For each i ∈ [k′], pick a ‘1’-entry in Rσ(i) ×Ci, hence k′ ‘1’-entries in
total, and delete every row or column which doesn’t go through one of these
entries. If we rename the remaining rows and columns as {1, . . . , k′}, we obtain
a ‘1’ at the intersection of column i and row σ(i) as desired. Furthermore, note
that we extracted exactly one row (resp. column) from each block. Thus (5.6)
ensures that in the extracted submatrix, there is no ‘1’ entry besides the pre-
viously described ones. That is, the extracted submatrix is the permutation
matrix of σ.

We have thus proved that from a matrix M with bounded degree and a
k-grid, we can extract the matrix of any permutation on k′ elements, with k′

an unbounded function of k. If rather than a single matrix M , we start from
a class of matrices with bounded degree and arbitrarily large grids, we then
obtain all permutation matrices.

Of course, the former proof heavily uses the assumption that M comes from
a bounded degree graph. In general, we cannot hope to always find this kind of
permutations matrices: if for instance M were the matrix of the complement
of a cubic graph, it would simply have far too few ‘0’s to find any non-trivial
permutation matrix. It would however contain the entry-wise complements of
permutation matrices, which is just as good for our purpose.

Generalising this, [17] describes a family of six possible encodings of per-
mutations as matrices: the first two are the permutation matrix as described
above, and its entry-wise complement. The remaining four are obtained from
the permutation matrix by propagating each ‘1’ in one of the four direc-
tions, up, down, left, or right. Formally, for a permutation σ on [n], and
s ∈ {=, ̸=,⩽R,⩾R,⩽C ,⩾C}, the n × n matrix Ms(σ) is defined to have a ‘1’
at the intersection of column i and row j if and only if the following holds:

j = σ(i) when s is ‘=’ j ̸= σ(i) when s is ‘ ̸=’
j ⩽ σ(i) when s is ‘⩽R’ j ⩾ σ(i) when s is ‘⩾R’

i ⩽ σ−1(j) when s is ‘⩽C ’ i ⩾ σ−1(j) when s is ‘⩾C ’
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Here M=(σ) is the permutation matrix, M ̸=(σ) its complement, while the
matricesM⩽R

(σ), M⩾R
(σ), M⩽R

(σ), andM⩾R
(σ) are obtained by propagating

the ‘1’s upwards, downwards, left, and right respectively.
Theorem 5.26 [17]. If M is a submatrix-closed class of matrices containing
arbitrarily high rank divisions, then for some s ∈ {=, ̸=,⩽R,⩾R,⩽C ,⩾C} and
for all permutations σ, Ms(σ) ∈ M.

Using Theorem 5.26 and the hardness results on permutations from sec-
tion 5.4.1, one can prove Theorem 5.19 for ordered graphs.
Theorem 5.27 [17]. For a hereditary class C of ordered structures, the follow-
ing are equivalent:

1. C has bounded twin-width,
2. C is a small class,
3. C has an FPT first-order model checking algorithm, and
4. C is NIP.

Where equivalence with (3) is under the FPT ̸= AW[∗] assumption.

Sketch of proof. We already know that bounded twin-width implies all other
three conditions, and must conversely prove that if C has unbounded twin-
width, then it does not satisfy any of them.

Assume thus that C has unbounded twin-width. By Corollary 5.5, adja-
cency matrices of ordered graphs in C have arbitrarily high grid rank. Then,
Theorem 5.26 yields some encoding of all permutations: σ ∈ Sn is encoded
by two sets X,Y of n vertices, such that the adjacency matrix of X and Y
is Ms(σ) for some s ∈ {=, ̸=,⩽R,⩾R,⩽C ,⩾C}.

Thus C contains encodings of all n! permutations in Sn using only 2n ver-
tices (C being hereditary is used here). This is more than 2O(n) non-isomorphic
graphs on n vertices, hence C is not tiny. Since ordered graphs have no non-
trivial automorphism, counting graphs with vertices labelled 1, . . . , n adds ex-
actly n! choices, hence C is not small either.

Furthermore, from these encodings of all permutations, one can obtain the
class of all biorders through a first-order transduction, which by Lemma 5.21
shows that C is independent, i.e. (4) does not hold. The key of this transduc-
tion is to find the correspondence between column i and row σ(i) in Ms(σ).
When s is = (resp. ̸=), it is given by the ‘1’s (resp. ‘0’s) in the matrix. For ⩽R

(⩾R), σ(i) is the largest (smallest) row intersecting column i at a ‘1’, while
similarly with columns for ⩽C and ⩾C . Each of these conditions is expressed
by a first-order formula. With the correspondence i–σ(i) in hand, one can con-
struct the biorder σ by combining the ordering of columns i with the ordering
of the corresponding rows σ(i). This defines six first-order transductions Φs

for s ∈ {=, ̸=,⩽R,⩾R,⩽C ,⩾C} from matrices to permutations, one for each
encoding. If C has unbounded twin-width, then it contains some encoding of
all permutations, hence one of these transductions Φs yields all biorders.

Proving that (3) does not hold, i.e. that first-order model checking in C is
AW[∗]-complete is more complex: we have a transduction of all graphs from C,
but we cannot conclude with Corollary 4.14 since it is not an efficient inter-
pretation. The problem is that the encoding of σ as an ordered graph is only
partially defined: the edges between X and Y form the matrix Ms(σ), but at
no point did we specify the edges inside X, nor inside Y . Thus we cannot
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describe an encoding algorithm which given σ finds some ordered graph in C
encoding it, as we do not know which combination of edges inside X and Y
yields a graph in C.

The solution is yet another application of Ramsey-like results to extract a
simple structure from these unspecified edges. This results in further case dis-
junctions, and no less than 25 classes of ordered graphs which are obstructions
to twin-width, one of which must be contained in C. In each of these 25 classes,
there is an efficient interpretation of all graphs, proving that model-checking is
AW[∗]-hard. We refer the reader to [17] for the details.

5.4.3 Obstructions in tournaments. We will conclude this section by
similarly presenting the obstructions to twin-width in tournaments. The grand
lines are the same as in ordered graphs: the obstructions correspond to a
few possible encodings of all permutations, and any class of tournaments with
unbounded twin-width contains one of these classes of obstructions. The proof
involves Theorem 5.26 and other Ramsey-like results, which we will omit to
focus on the obstructions themselves.

Thanks to interesting symmetries in tournaments, there are in fact fewer
classes of obstructions—that is fewer encodings of permutations—than for
matrices or ordered graphs: only three, named F=, F⩽, and F⩾, where Fs

is the class of encodings Fs(σ) for all permutations σ as described below.
Consider σ ∈ Sn a permutation on n elements, and s one of the re-

lations =,⩽,⩾. Then the tournament Fs(σ) consists of 2n vertices, called
X = {x1, . . . , xn} and Y = {x1, . . . , yn}. Each of X,Y induces a transitive
tournament with the natural ordering, i.e. there are edges xi → xj and yi → yj
whenever i < j. The edges between X and Y encode σ as specified by the
relation s: there is an edge yj → xi if and only if i s σ−1(j) holds.

Thus in F=(σ) the edges oriented from Y to X form a matching which
encodes σ. In F⩽(σ) and F⩾(σ), these edges form a half-graph which orders X
and Y by inclusion of neighbourhoods, so that the order on X is the natural
one, and the order on Y encodes σ. Precisely, in F⩾(σ), for any i, j ∈ [n], we
have

N−(xi) ∩ Y ⊆ N−(xj) ∩ Y ⇐⇒ i ⩽ j(5.10)

and N−(yi) ∩X ⊆ N−(yj) ∩X ⇐⇒ σ−1(i) ⩽ σ−1(j),(5.11)

while in F⩽(σ), the direction of inclusions is reversed. See Figure 5.8 for an
example of these encodings.
Lemma 5.28 [51]. For each s ∈ {=,⩽,⩾}, the class Fs efficiently interprets
the class B of all permutations represented as bi-orders.

Precisely, there is an interpretation Φs, and for any permutation σ ∈ Sn,
there exists σ′ ∈ Sn+1 computable in polynomial time such that σ = Φs(Fs(σ

′)).

Proof. We will first show that Fs(σ) transduces σ, and then how to remove the
coloring step of the transduction by extending σ to a slightly larger σ′.

Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be as in the definition of Fs(σ).
The transduction uses coloring to guess the set X. It then defines two total
orderings on Y , which together describe σ. The first ordering is given by the
direction of edges inside Y . The second depends on s:



86 CHAPTER 5. NOWHERE SPARSE STRUCTURES

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

F=(σ)

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

F⩽(σ)

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

F⩾(σ)

Figure 5.8: The three encodings of permutations (here σ = 31452) as tourna-
ments. For readability, edges oriented left to right are omitted.

• If s is =, edges oriented from Y to X are a perfect matching. The
direction of edges in X, interpreted through this matching, defines the
second order on Y .

• If s is ⩾ or ⩽, the second order is inclusion, respectively inverse inclusion,
of in-neighbourhoods intersected with X, see (5.11).

If we already know which vertices belong to X, it is simple to define these two
orderings with a first-order formula. Finally, the transduction deletes vertices
of X, leaving only Y and the two orderings which encode σ.

Let us now show how to define the partitionX,Y in first-order logic, without
the non-deterministic colouring, at the cost of extending σ with one fixed value.
Here, we assume n ⩾ 2.

• If s is =, define σ′ ∈ Sn+1 by σ′(n + 1) = n + 1 and σ′(i) = σ(i)
otherwise. Then, in F=(σ

′), the unique vertex with out-degree 1 is yn+1.
Its out-neighbour is xn+1, and

X = N−(xn+1) ∪ {xn+1} \ {yn+1}.

• If s is ⩽, define σ′(1) = n + 1 and σ′(i + 1) = σ(i). Then yn+1 is the
unique vertex with out-degree 1, and its out-neighbour is x1, and

X = N+(x1) ∪ {x1}.

• If s is ⩾, we once again define σ′(1) = n + 1 and σ′(i + 1) = σ(i).
Then x1 has in-degree 1, and its in-neighbour is yn+1. The only other
vertex which may have in-degree 1 is y1, and this happens if and only
if σ′(2) = 1. When this is the case, the direction of the edge x1 → y1
still allows to distinguish x1 in FO logic. Then, having defined x1, we
obtain yn+1 as its in-neighbour, and we have

X = N+(yn+1).
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In all three cases, Fs(σ
′) contains two extra vertices compared to Fs(σ). These

extra vertices can be uniquely identified in first-order logic, and can then be
used to define X. Combined with the previous argument, this gives an inter-
pretation of σ from Fs(σ

′).

We can now prove that the classes Fs are complex.
Theorem 5.29 [51]. For each s ∈ {=,⩽,⩾}, the class Fs

1. is not small,
2. has an AW[∗]-complete first-order model checking problem, and
3. is first-order independent.

Proof. By Lemma 5.28, all n! permutations on n elements are encoded by tour-
naments in Fs on 2n + 2 vertices, hence there are at least n! non-isomorphic
such tournaments. This is more than 2O(n) tournaments on n vertices, hence
the class Fs is not tiny. Using the arguments of Lemma 5.28, we can also
show that these encodings Fs(σ

′) do not admit any non-trivial automorphism.
For tournaments on n vertices, adding labels 1, . . . , n then gives n! additional
choices, hence the class has more than n!2O(n) labelled tournaments on n ver-
tices, i.e. is not small.

Finally Lemma 5.28 proves that Fs efficiently interprets the class of all
permutations, and thus of all graphs by Lemma 5.21. Thus Fs is first-order
independent, and has AW[∗]-complete first-order model checking by Corol-
lary 4.14.





Chapter 6

PERMUTATIONS

Permutations are at the origin of twin-width: it is to find patterns in permuta-
tions that Guillemot and Marx defined their width [61]. Using our knowledge
of twin-width developed thus far, we will in this chapter revisit the results of
Guillemot and Marx, and a few other classical results on permutations such as
the Stanley–Wilf conjecture proved by Marcus and Tardos [73].

We will then prove a decomposition result of Bonnet, Bourneuf, Thomassé,
and the author [12]: permutations of bounded twin-width can be written as a
bounded composition of permutations with twin-width 0, which are well-known
as the separable permutations. This result is based on a complex decomposition
of structures of bounded twin-width, introduced by Pilipczuk and Sokołowski
in [79] and refined by Bourneuf and Thomassé in [23] to prove polynomial
χ-boundedness of graphs with bounded twin-width. Finally, we will present
some consequences on graphs of this decomposition of permutations: for any k,
graphs of twin-width k can be encoded (in the sense of first-order interpreta-
tions) by graphs with twin-width bounded by some universal constant.

6.1 Encodings of permutations

Before proving any result on permutations, we need to explain how they are
encoded. We already introduced in Chapter 5 our preferred encoding of per-
mutations as biorders. However, it is not the only conceivable encoding. In this
section, we present a couple of alternatives, and show that they are equivalent
to biorders for twin-width, but not for clique-width. These encodings and their
comparison are partly inspired by the work of Albert, Bouvel, and Féray [4],
which approaches the question from the point of view of first-order logic.

Biorders Recall from Chapter 5 that the permutation σ ∈ Sn is encoded
as Bσ = ([n], <,<σ) where x <σ y if and only if σ(x) < σ(y), see Figure 6.1a.
Notice that any biorder (X,<1, <2) is isomorphic to Bσ for some permuta-
tion σ: it suffice to identify X with {1, . . . , |X|} following the ordering <1.
Furthermore, Bσ and Bτ are isomorphic if and only if σ = τ : this encoding is
a bijection between permutations and biorders considered up to isomorphism.

Composition and inverses of permutations have a natural expression in
term of biorders. The inverse is simply obtained by swapping the roles of
the two orderings: if Bσ is isomorphic to (X,<1, <2), then Bσ−1 is isomorphic
to (X,<2, <1). Composition is obtained by identifying two of the orderings:
if Bσ, Bτ are isomorphic to (X,<1, <2) and (X,<2, <3) respectively, then Bτ◦σ
is isomorphic to (X,<1, <3).

Ordered matching Instead of superposing the two orderings as a biorder,
one can separate the domain and image of the permutation, linking them by a
matching representing the permutation. Precisely, for σ ∈ Sn, construct two

89



90 CHAPTER 6. PERMUTATIONS

1
1

2
5

3
3

4
2

5
4

i:
σ(i):

(a) The biorder Bσ = ([5], <,<σ)
(left-to-right ordering < is omitted).

x1

y1

x2

y5

x3

y3

x4

y2

x5

y4

(b) The ordered matching
Mtσ = (X ⊎ Y,<,E) (order <
in gray and edges E in black).

1 2 3 4 5

(c) The ordered bijection Bij σ = ([n], <,E) (order < in gray and edges E in black).

Figure 6.1: Three encodings of the permutation σ = 15324.

copies X = {x1 < · · · < xn} and Y = {y1 < · · · < yn} of the linear order on n
points, and add the edges E =

{
xiyσ(i) | i ∈ [n]

}
. The ordered matching is the

structure Mtσ = (X ⊎ Y,<,E), see Figure 6.1b.
If we consider X as columns and Y as rows, each ordered by <, then the

adjacency matrix of the relation E is isomorphic to the permutation matrix Mσ:
the rows and columns are [n], and there is a ‘1’ at position (x, y) if and only
if y = σ(x).

Ordered bijection Given the ordered matching Mtσ, if we merge the ver-
tices according to the edges of the matching E, we obtain the biorder Bσ. In-
stead, one could merge the vertices according to the order: identify xi with yi.
We call the resulting structure the ordered bijection Bij σ = ([n], <,E) with
directed edges E = {xσ(x) | x ∈ [n]}, see Figure 6.1c.

Remark that A(E,<) is once again the permutation matrix Mσ. However,
here the columns and rows of the matrix correspond to the same vertices,
whereas they were distinct vertex sets in the case of ordered matchings.

Let us now prove that these encodings are equivalent for twin-width.
Theorem 6.1. For any permutation σ, tww(Bσ), tww(Mtσ), and tww(Bij σ)
are bounded by functions of each other.

Proof. Let us start with the two simpler inequalities.
Claim 6.2. tww(Mtσ) ⩽ tww(Bσ) + 2.

Proof. Consider a contraction sequence for Bσ = ([n], <,<σ) of width k. We
adapt it to Mtσ = (X ⊎ Y,<,E) as follows: when merging i, j ∈ [n] in Bσ we
merge xi with xj , then yσ(i) with yσ(j). In the resulting contraction sequence,
the error degree with regards to E never exceeds 2. The errors in X (resp. Y )
with regards to < correspond to errors in Bσ with regards to < (resp. <σ),
hence the error degree with regards to < is bounded by 2. ■

Claim 6.3. tww(Mtσ) ⩽ 2 · tww(Bij σ).
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Proof. Consider a contraction sequence for Bij σ = ([n], <,E) of width k. This
time, we adapt it to Mtσ = (X ⊎ Y,<,E) as follows: when merging i, j ∈ [n]
in Bij σ, we merge xi with xj , then yi with yj . This time, the resulting contrac-
tion has error degree at most k with regards to <, and at most k with regards
to E. ■

We now assume that the ordered matching Mtσ has small twin-width, and
must bound the twin-width of the other two structures. For Bσ, this can be
done using a well-chosen refinement of the contraction sequence, using tech-
niques developed for error rank in Chapter 3.
Claim 6.4. tww(Bσ) ⩽ 4(tww(Mtσ) + 1)3.

Proof. Consider the ordered matching Mtσ = (X ⊎Y,<,E), and a contraction
sequence P2n, . . . ,P1 of width k. Define the projection of a part P ∈ Pi on X
and Y as

PX = {i | xi ∈ P} and PY =
{
i | yσ(i) ∈ P

}
(note the permutation σ for PY ). Call PX

i =
{
PX | P ∈ P

}
the projection

of P on X, and similarly PY
i .

If we see PX
i as a partition of the vertex set of Bσ = ([n], <,<σ), then

the error degree of PX
i with regards to < is at most k: any error for < in Bσ

directly translates into an error in Mtσ Note however that PX
i may have large

error degree with regards to <σ. Similarly, PY
i has error degree at most k with

regards to <σ.
For P1, P2 ∈ Pi, if PX

1 intersects PY
2 , then there is an edge of E between P1

and P2 in Mtσ, which implies that they are in error or equal, unless they are
both singletons. It follows that any part of PX

i intersects at most k + 1 parts
of PY

i , and vice-versa. Define now the common refinement of PX
i and PY

i

Qi =
{
P ∩ P ′ | P ∈ PX

i , P
′ ∈ PY

i

}
.

It follows from the previous remarks that Qi is a (k + 1)-refinement of PX
i

and PY
i .

Since Qi (k+1)-refines PX
i which has error degree k for <, by Lemma 3.15,

Qi has error degree at most (k+ 1)2 for <. For the same reason using PY
i , Qi

has error degree at most (k+ 1)2 for <σ, hence error degree at most 2(k+ 1)2

in total.
Finally, note that Q2n must be the partition into singletons, Q1 the trivial

partition, and that Qi+1 refines Qi. Also, Qi+1 2(k + 1)-refines Pi, hence it
a fortiori 2(k + 1)-refines Qi. Under these conditions, Lemma 3.16 allows to
complete Q2n, . . . ,Q1 into a contraction sequence of width at most 4(k+1)3 ■

Finally, we need to bound tww(Bij σ). Here, we rely on the characterisation
of twin-width with grid rank.
Claim 6.5. tww(Bij σ) ⩽ f(tww(Mtσ)) for some function f .

Proof. Consider a contraction sequence for Mtσ = (X ⊎Y,<,E). Remark that
if P is a partition of X ⊎ Y and P ∈ P intersects both X and Y , then P is in
error with every part of P due to <. Let us slightly tweak Mtσ to make it an
ordered structure: we extend < by X < Y into a total ordering of X ⊎Y . The
previous remark implies that this does not increase the twin-width.
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in+ j + 1

jn+ i+ 1

Figure 6.2: Matrix of a permutation on [n2] with an n-grid.

We now apply Theorem 3.9 and find that the adjacency matrix A(E,<) has
bounded grid rank. Notice that A(E,<) contains the permutation matrix Mσ

as submatrix.
Consider now the ordered bijection Bij σ = ([n], <,E′). Recall that its

adjacency matrix A(E′, <) is exactly the permutation matrix Mσ. Theorem 3.9
thus gives a bound on tww(Bij σ). ■

This completes the proof of equivalence of the three encodings of permuta-
tions.

Theorem 6.1 tells us that for a class of permutations, having bounded twin-
width is meaningful independently of the choice of encoding. Furthermore,
we have implicitly found a characterisation of twin-width through grids in the
permutation matrices. Let us restate it:
Theorem 6.6 [61]. A class C of permutations has bounded twin-width if and
only if the class of permutation matrices {Mσ | σ ∈ C} does not admit arbit-
rarily large grids.

Proof. Using the ordered bijection encoding, we find that σ has bounded twin-
width if and only if Mσ has bounded grid rank. For permutation matrices,
having bounded grid rank is equivalent to avoiding grids (in the sparse sense
of section 3.1) of some size. Indeed, a rank-k division is always also a k-grid,
and a k2-grid in a permutation matrix yields a rank-k division by regrouping
blocks of the grid k by k.

One can construct permutations of large twin-width using Theorem 6.6: it
suffice to ensure that they contain a large grids. Given n ∈ N, consider the per-
mutation σ ∈ Sn2 defined by σ(in+j+1) = jn+i+1 for any i, j < n. ThenMσ

contains an n-grid (see Figure 6.2), hence the twin-width σ is unbounded as n
increases.

To conclude this section, let us show that the equivalence between biorder
and ordered matchings goes beyond twin-width: they are equivalent up to
first-order transductions. By contrast, ordered bijections are more expressive
for first-order logic: no fixed transduction can reconstruct Bij σ from Bσ for ar-
bitrary σ. Intuitively, the reason is that Bij σ gives access the composition σ◦σ:
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given i ∈ [n], it suffice to follow the edges of E twice to find σ(σ(n)) in Bij σ,
which is not possible in Bσ or Mtσ.
Fact 6.7. There are first-order transductions which for any permutation σ,
compute Bσ when given Mtσ, and vice versa.

Proof. Reconstructing Bσ from Mtσ is simple: identify i in Bσ with xi ∈ Mtσ.
Now given i, j ∈ V (Bσ), the ordering i < j coincides with the ordering in Mtσ.
Further, following the edges of the matching in Mtσ leads to yσ(i), yσ(j), and
we have i <σ j in Bσ if and only if yσ(i) < yσ(j) in Mtσ. All of the above is
easily expressed using first-order formulæ.

To conversely reconstruct Mtσ from Bσ, we need the extended notion of
transductions with copying : given Bσ, this operation makes two copies of Bσ

and adds a matching joining each vertex x in Bσ to its new copy. The result
is almost exactly Mtσ: all that is left to do is to forget the ordering <σ in
the original copy, which becomes X, and forget < in the new copy, which
becomes Y .

Fact 6.7 and Theorem 4.16 give a new proof of the equivalence of biorders
and ordered matchings as encodings of permutations for twin-width, although
with worse bounds than Theorem 6.1. This is not exclusive to twin-width:
clique-width can be generalised to relational structures, and is stable under
first-order (and even monadic second-order) transductions. Thus the clique-
width of Bσ and of Mtσ are bounded by functions of each other.

The same is not true of Bij σ:
Fact 6.8. There are permutations σ such that Bσ has bounded clique-width
and Bij σ has arbitrarily large clique-width.

Sketch of proof. For any n ∈ N, let σ ∈ Sn be the permutation which adds
√
n

modulo n.
In Bσ, denote X = {1, . . . , n −

√
n} and Y = {n −

√
n + 1, . . . , n}. Both

inside X and inside Y , the orders < and <σ coincide. Furthermore, X < Y
and X >σ Y . This implies that the clique-width of Bσ is 2.

In Bij σ, replace the ordering < by a Hamiltonian path joining each vertex to
its successor: this is a first-order interpretation. In the resulting graph, vertex i
has edges to i −

√
n, i − 1, i + 1, and i +

√
n modulo n: this is the

√
n ×

√
n

grid, with some additional edges connected each border to the opposite one.
Regardless of these edges, the clique-width of this graph is known to be in
the order of

√
n. Since this graph was obtained by first-order interpretation

from Bij σ, it follows that Bij σ has unbounded clique-width.

Since Bσ and Bij σ are not equivalent for clique-width, they cannot be
equivalent up to first-order transductions:
Corollary 6.9. There is no first-order transduction which for any permuta-
tions σ, given Bσ, constructs Bij σ.

6.2 Patterns, substitutions, and separability

We will now focus on the twin-width of a number of constructions and classes
of permutations. Some of the following results involve the precise value of twin-
width and not just its asymptotic behaviour, thus we need to fix the encoding:
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by abuse of notation, we identify a permutation σ with its biorder Bσ, and will
thus write e.g. tww(σ) for tww(Bσ).

6.2.1 Patterns. Given a biorder B = (X,<1, <2), one can for any sub-
set Y ⊂ X of vertices consider the induced substructure B[Y ] = (Y,<1, <2).
If B and B[Y ] represent permutations σ and τ respectively, we say that τ is a
pattern σ. An alternative characterisation is through permutation matrices: τ
is a pattern of σ if and only if Mτ is a submatrix of Mσ.

Notice that this notion, while very natural when expressed with biorders,
is less convenient to define in term of the bijection σ : [n] → [n]: given any
subset Y ⊂ [n], one can consider the restriction of σ to Y . Its image σ(Y ) is
in general not equal to Y . To reconstruct a permutation from this restriction,
one would need to ‘compact’ Y and independently σ(Y ) into an interval [k],
preserving only the relative order of elements.

Since a pattern is a substructure, we immediately obtain:
Lemma 6.10. If τ is a pattern of σ, then tww(τ) ⩽ tww(σ).

Given a permutation τ , one can consider the class F(τ) of permutations
avoiding τ : σ ∈ F(τ) if and only if τ is not a pattern of σ. This is very
similar to defining a class of graphs by forbidding an induced subgraph, such
as the cographs which can be characterised as the graphs without the path P4

as induced subgraph.
In general, classes of graphs avoiding a given induced subgraph may be

very complex: while F(H) might be simple for specific choices of H (e.g. the
cographs F(P4)), one could hardly expect the class F(H) to satisfy many
interesting properties for arbitrary H.1

By contrast, when considering permutations, the class F(τ) is relatively
simple for any pattern τ . For example, the motivation of the Marcus–Tardos
theorem (Theorem 3.3) was to show that F(τ) is small for any permutation τ ,
(i.e. has at most cn permutations on n elements for some c function of τ), a
result known as the Stanley–Wilf conjecture. Guillemot and Marx main result
in [61] is that for any fixed τ , one can recognise permutations in F(τ) in linear
time. Neither of these results hold when replacing permutations with graphs.

With the knowledge of twin-width, these results on pattern-avoiding classes
are explained by the following key remark of Guillemot and Marx:
Theorem 6.11 [61]. A class C of permutations has bounded twin-width if and
only if C ⊂ F(τ) for some τ .

This is based on the existence of universal permutations:
Lemma 6.12. Let σ be a permutation whose matrix Mσ contains a k-grid.
Then any τ ∈ Sk is a pattern of σ.

Proof. Say that σ ∈ Sn. A k-grid in Mσ is a pair (R, C) of partitions of [n]
into k intervals each, R = {R1 < · · · < Rk} and C = {C1 < · · · < Ck} such
that for all i, j ∈ [k], there is x ∈ Ci such that σ(x) ∈ Rj .

Consider now some τ ∈ Sk. For each i ∈ [k], choose xi ∈ Ci such
that σ(xi) ∈ Rτ(j). Then σ(xi) < σ(xj) if and only if τ(i) < τ(j). Thus,
restricting σ to {x1, . . . , xk} yields τ as a pattern.

1The famous Erdős–Hajnal Conjecture is a notable exception.
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From Lemma 6.12 and Theorem 6.6, we obtain the equivalence between
bounded twin-width and avoiding patterns.

Proof of Theorem 6.11. Assume that C has bounded twin-width. Thanks to
Lemma 6.10, we can also assume C to be closed under patterns. Since C has
bounded twin-width, it cannot contain all permutations (see the example of
Figure 6.2). Thus C avoids τ , for any τ ̸∈ C.

Conversely, if C avoids τ , by Lemma 6.12, the matrix Mσ has no k-grid for
any σ ∈ C, where k is the size of τ . By Theorem 6.6, this implies that C has
bounded twin-width.

With Theorem 6.11, we can restate the Stanley–Wilf conjecture as: any
class of permutations with bounded twin-width is small. This is Theorem 3.37.
The Guillemot–Marx pattern recognition algorithm can similarly be obtained
from the results on twin-width we have presented.
Theorem 6.13 [61]. Given permutations σ, τ , there is an FPT algorithm to
test if τ is a pattern of σ, with |τ | as parameter.

Proof. Given σ, which is an ordered structure, one first computes an approx-
imation of twin-width using Corollary 5.4. We know that F(τ) has bounded
twin-width, hence if this approximation of tww(σ) is too large, τ must be a pat-
tern of σ. Thus we can assume that we have computed a contraction sequence
for σ of width bounded by a function of τ .

This contraction sequence can be used to test if τ is a pattern of σ with FPT
complexity: this is a variant of the independent set algorithm (Theorem 2.21),
and a special case of the first-order model checking algorithm (Theorem 4.15).
Indeed for any fixed relational structure S, there is a first-order formula ϕS
which expresses the presence of S as induced substructure.

We can thus test whether τ is a pattern of σ with FPT complexity, para-
meterised by the width of the contraction sequence and the size of ϕτ , both of
which are functions of τ only.

6.2.2 Separable permutations. We will now focus on a particularly im-
portant class of permutations: separable permutations. They very closely re-
semble cographs (cf. section 2.2.2), as both cographs and separable permuta-
tions can be characterised either as constructed through a pair of operations,
or by forbidding some simple induced substructure, and both coincide with
twin-width 0.

Consider two biorders B = (X,<1, <2) and B′ = (X ′, <′
1, <

′
2). Their direct

sum B ⊕ B′ is the biorder obtained from the disjoint union of B and B′ by
placing X before X ′ for both orderings. Their skew sum B ⊗ B′ is obtained
similarly, except that X is placed before X ′ in the first ordering, but after X ′ in
the second, A permutation is called separable if it can be constructed by direct
and skew sums starting from the one-element permutation 1 7→ 1. We denote
by S the class of separable permutations. See Figure 6.3 for an example.

A folklore result is that separable permutations can be characterised by
excluding just two patterns.
Fact 6.14 [22, Lemma 5]. The permutation σ is separable if and only if
neither 3142 nor 2413 is a pattern of σ.
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σ1 σ2

σ2

σ1

σ1 ⊕ σ2

σ1 ⊗ σ2

⊗
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⊗

=

⊕

=

Figure 6.3: Left: visualisation of direct and skew sum of permutations σ1, σ2.
Right: steps in the construction of the separable permutation 356412 by direct
and skew sums. Permutations are drawn as ordered matchings.

Furthermore, Guillemot and Marx noticed that separable permutations can
be characterised using twin-width.
Fact 6.15 [61, Proposition 3.3]. A permutation σ is separable if and only
if tww(σ) = 0.

Proof. Firstly, one may notice that neither 3142 nor 2413 contains twins, hence
by Lemma 2.1, their twin-width cannot be 0. Thus, any non-separable per-
mutation has twin-width at least 1 since it contains the pattern 3142 or 2413.

To show that conversely separable permutations have twin-width 0, it suffice
to show that direct and skew sums preserve twin-width. Consider arbitrary
permutations σ, τ , and the biorder B = ([n], <1, <2) representing their direct
sum. The domain is partitioned as [n] = X ⊎ Y with X <1 Y and X <2 Y
so that B[X] represents σ while B[Y ] represents τ . Now given a contraction
sequence for σ, we can simply replicate it in B inside X without creating errors
with Y . Then, one can similarly replicate a contraction sequence for τ inside Y ,
and finally contract X with Y . This implies that

(6.1) tww(σ ⊕ τ) = max(tww(σ), tww(τ)).

The same proof also works for the skew sum.

6.2.3 Substitution. Let us generalise the direct and skew sums. Given
two biorders B = (X,<1, <2) and B′ = (X ′, <′

1, <
′
2), and a vertex x ∈ B, the

substitution of x by B′ in B is the biorder obtained from B as follows: x is
deleted and replaced with V (B′), and for in both orderings <i, i = 1, 2, the
newly added vertices of V (B′) form an interval at the old position of x, while
keeping the ordering given by <′

i between vertices of V (B′).
Given permutations σ1, σ2, the substitution of 1 by σ1 and of 2 by σ2 in 12

(the identity permutation on two elements) yields the direct sum σ1 ⊕ σ2.
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Similarly, substituting i by σi in 21 yields the skew sum σ1 ⊗ σ2. This allows
to reformulate the definition of separability: a permutation is separable if and
only if it can be obtained by a sequence of substitutions, starting from the
permutations 12 and 21.

More generally, given any class C of permutation, the closure of C under
substitution, denoted C∗, is the smallest class containing C closed under substi-
tution (i.e. the result of any substitution of permutations in C∗ is itself in C∗).
Thus, the separable permutations are S = {12, 21}∗.

In the proof of Fact 6.15, we showed that direct and skew sums preserve
twin-width. A direct generalisation of this argument gives:

Lemma 6.16 [61, Proposition 3.4]. If σ is obtained by substitution from per-
mutations σ1, σ2, then tww(σ) = max(tww(σ1), tww(σ2)).

In particular, for any class C of permutations, C∗ has bounded twin-width
if and only if C does, and with the same bound.

6.2.4 Substitution trees. The construction of a permutation σ ∈ C∗ by
a sequence of substitutions starting from C can be described as a tree. These
substitution trees will play a significant role latter in this chapter, which is why
we take some time to introduce some terminology.

We work with rooted trees. Vertices of a trees are called nodes. The an-
cestors of a node x are the nodes in the unique path from x to the root r, and
the parent of x is the first node on this path. We will also speak of descendants
(inverse of ancestors), children (inverse of parent), and later in this chapter
grandchildren (children of children), siblings (nodes with same parent), and
cousins (non-sibling nodes with the same grandparent). The set of leaves of a
tree T is denoted by L(T ), while the internal nodes are I(T ) = V (T ) \ L(T ).
For any node t ∈ T , we denote by T (t) the subtree rooted at t (i.e. consisting
of the descendants of t), and by L(t) ⊆ L(T ) the set of leaves of T (t).

An ordered tree (T,<) is a rooted tree T equipped with a linear order <
on L(T ), such that for each node t ∈ T , the leaves L(t) form an interval of <.
In that case we also say that < is compatible with T . One can think of < as
a left-to-right order. If x, y ∈ T are not in an ancestor or descendant of each
other, then L(x), L(y) are disjoint interval of <, hence either L(x) < L(y), or
L(y) < L(x). We then say that x < y or y < x respectively. Thus < induces
a total order on the children of any given internal node t. This process can be
reversed. Given an ordering <t of the children of t for each internal node t, we
define < compatible with T as follows: for any leaves x, y, we have x < y iff
x′ <t y

′, where t is the last (that is, closest) common ancestor of x, y, and x′

and y′ are the children of t which are ancestors of x and y respectively.
We can now redefine substitutions: the idea is to find a tree compatible

with both orderings of a biorder. Consider T a tree and B = (L(T ), <,≺) a
biorder on its leaves such that both < and ≺ are compatible with T . Then for
every internal node t ∈ T , < (resp. ≺) induces an ordering <t (resp. ≺t) on the
children of t, thus yielding a family of biorders {Bt = (<t,≺t)}t∈I(T ). Then B
can be constructed by a sequence of substitutions starting from {Bt}t∈I(T ).
We say that B is obtained by substitution of {Bt}t∈I(T ) along T . One may
now check that a permutation σ is in the substitution closure C∗ if and only
if σ can be obtained by substitution of permutations in C along some tree.
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6.3 Composition and decomposition

Patterns and substitutions are, as we saw in Lemmas 6.10 and 6.16, particularly
well behaved with regards to twin-width. We will now add to our library a
third and most natural operation for permutations: composition, in the sense
of functions. Its relation to twin-width and patterns is more complex, but no
less interesting.

Let us start with simple lemmas relating composition, patterns, and sub-
stitution.
Lemma 6.17. If τ is a pattern of σ1 ◦ σ2, then there exists τi pattern of σi
for i = 1, 2 such that τ = τ1 ◦ τ2.

Proof. Represent σ1, σ2 as biorders (X,<2, <3) and (X,<1, <2) on the same
vertex set. Then σ1 ◦ σ2 is represented by (X,<1, <3). Now let Y ⊂ X induce
the pattern τ in σ1 ◦ σ2. Choosing τi to be the pattern of σi induced by Y
yields the result.

Lemma 6.18. If C,D are substitution-closed classes of permutations, then so
is the class of their compositions C ◦ D.

Proof. Consider a substitution tree T with for each internal node t a permuta-
tion σt◦τt on its children, with σt ∈ C and τt ∈ D. Then we can also consider T
as substitution tree with permutation σt on the children of t: this yields a per-
mutation σ on L(T ), and σ ∈ C since C is substitution closed. We similarly
obtain τ ∈ D when equipping the children of t with τt. Then, it is simple
to verify that the permutation corresponding to the original substitution tree
(with σt ◦ τt) is σ ◦ τ ∈ C ◦ D.

In Chapter 5, we saw that composition of permutations preserves bounded
twin-width (but not the exact bound), because it can be expressed as glueing
two structures along a total ordering.
Lemma 6.19 (Corollary 5.7 restated). There is a function f such that for any
permutations σ1, σ2 ∈ Sn, tww(σ1 ◦ σ2) ⩽ f(tww(σ1), tww(σ2)).

Lemma 6.19 is a remarkably simple statement, yet to our best knowledge it
has no direct proof. Through Theorem 6.11, it can also be restated in terms of
patterns. Under this form, an alternative proof by enumeration can be deduced
from Marcus and Tardos proof of the Stanley–Wilf conjecture [73].
Lemma 6.20 (Corollary 5.7 re-restated). For any patterns τ1, τ2, there is
some τ such for any given σ1 ∈ F(τ1), σ2 ∈ F(τ2), we have σ1 ◦ σ2 ∈ F(τ).

Proof. Define C = F(τ1) ◦ F(τ2) the class of all compositions σ1 ◦ σ2 of per-
mutations σi ∈ F(τi) (with σ1, σ2 of the same size). By the Stanley–Wilf
conjecture (or Theorem 3.37), the class F(τi) is small: there is a constant ci
such that there are at most cni permutations of size n in F(τi). It follows that
there are at most (c1c2)

n ≪ n! permutations of size n in C, hence C does not
contain all permutations. By Lemma 6.17, C is closed under patterns, hence
choosing τ ̸∈ C gives C ⊆ F(τ) as desired.

Suppose now that we start from the very simple class S of separable per-
mutations. By Lemma 6.19, for any fixed k, the class Sk of compositions
of k separable permutations has bounded twin-width. The main result of this
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chapter, whose proof spans the next three sections, is that the converse also
holds.
Theorem 6.21 [12]. For any twin-width bound t ∈ N, there is a length k ∈ N
such that any permutation σ with tww(σ) ⩽ t factorises as a composition
σ = σ1 ◦ · · · ◦ σk with σi separable.

Equivalently, a class C of permutations has bounded twin-width (or avoids
some pattern) if and only if it is contained in Sk for some k ∈ N.

The general strategy of the proof of Theorem 6.21 is based on colouring
results for graphs of bounded twin-width by Pilipczuk and Sokołowski [79],
and Bourneuf and Thomassé [23]. It proceeds by induction on a parameter
functionally equivalent to twin-width (a variant of grid rank): a given per-
mutation σ is decomposed into permutations which are strictly simpler for this
parameter. The decomposition relies on more abstract operations which we
show can themselves be expressed as compositions of separable permutations.

We will conclude this section with a first simple example of a high level
operation, shuffles, which decomposes into separable permutations. A per-
mutation σ ∈ Sn is a k-shuffle if there is some partition

⊎k
i=1Xi of its domain

[n] such that the restriction (in the sense of patterns) of σ to any Xi is the
identity permutation. More generally, given a class C of permutations, σ is a
k-shuffle of C if there is a partition

⊎k
i=1Xi = [n] such that the restriction of σ

to any Xi is in C.
Let us say that a class C of permutations is closed under symmetry if it

is closed by conjugating with the decreasing permutation: if σ ∈ C, then the
permutation i 7→ n+1−σ(n+1− i) should also be in C. In terms of biorders,
this corresponds to replacing each of the two linear orders by its dual, i.e. its
reverse order. Remark that if C,D are closed under symmetry, then so is C ◦D.
For example, the class S of separable permutations is closed under symmetry.
Lemma 6.22. For a class C of permutations closed under substitution and
symmetry, any 2k-shuffle of C is in Sk ◦ C ◦ Sk. In particular, any 2k-shuffle
is in S2k.

Proof. Let σ = (X,<1, <2) be a 2k-shuffle of C. Then there is a partition
of its domain X = Y ⊎ Z such that the restrictions of σ to both Y and Z
are 2k−1-shuffles of C.

Define an intermediate linear order ≺1 by

• Y ≺1 Z,
• inside Y , ≺1 coincides with <1, and
• inside Z, ≺1 coincides with the dual of <1.

We claim that (X,<1,≺1), is separable. Indeed, let x be the minimum of X
for <1. If x ∈ Y , then x is the minimum of ≺1, while if x ∈ Z it is the maximum
of ≺1. Either way, we can separate X into {x} and X \ {x}, and proceed
by induction on the latter. This scheme is a decomposition of (X,<1,≺1)
as a separable permutation, with the specificity that the separating tree is
a caterpillar. We define ≺2 similarly with regards to <2, so that (X,≺2, <2) is
separable.

Consider now the permutation (X,≺1,≺2). Since we have Y ≺i Z for
both i = 1, 2, it suffices to consider this permutation restricted to either Y
or Z. By construction, the restriction to Y is exactly (Y,<1, <2), and the
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restriction to Z is (Z,<1, <2) up to symmetry. These two permutations are
2k−1-shuffles of C, hence by induction are in Sk−1 ◦C ◦Sk−1. Since this class is
closed under symmetry and substitution, we obtain that (X,≺1,≺2) is also in
Sk−1 ◦ C ◦Sk−1, and conclude by composing with (X,<1,≺1) and (X,≺2, <2).

Finally, the remark that 2k-shuffles are in S2k is obtained by applying the
result with C the class of identity permutations.

6.4 Delayed substitutions

We now begin the proof of Theorem 6.21, with arguably the most important
step of the decomposition: delayed substitutions, which as the name suggests
generalise the substitution trees of section 6.2.4.

The technique of delayed substitution was introduced by Bourneuf and
Thomassé to prove that classes of graphs with bounded twin-width are poly-
nomially χ-bounded [23, Section 2]. We will see that for permutations, these
delayed substitutions can be expressed as a bounded product of substitutions.

6.4.1 Definition. A delayed structured tree (T,<, {≺t}t∈T ) consists of an
ordered tree (T,<), equipped with, for each node t ∈ T , a linear order ≺t on
the grandchildren of t. This is analogous to the trees describing substitutions,
except that ≺t is defined on the grandchildren instead of the children, hence
‘delayed’. We add the technical requirement that each leaf is a single child
(with no siblings), so that whenever x ̸= y are leaves, their closest ancestor is
at distance at least 2.

The realisation of this delayed structured tree is the structure (L(T ), <,≺),
where for two leaves x, y, we have x ≺ y if and only if x′ ≺t y

′, where t is the
closest ancestor of x, y, and x′, y′ are the grandchildren of t which are ancestors
of x, y respectively. In general, this binary relation ≺ is not a linear ordering,
as it might not be transitive. We call the delayed structured tree well-formed
if ≺ is a linear order, so that the realisation is a permutation on L(T ). We will
only consider well-formed delayed structured trees. Remark that construction
only uses the ordering ≺t between cousins: the ordering between siblings is
irrelevant.

We say that the permutation (<,≺) is obtained by delayed substitution from
the permutations {(<t,≺t)}t∈T , understood as permutations on the grandchil-
dren of t. If for each t ∈ T the permutation (<t,≺t) on its grandchildren is in
a given class C, we also say that the delayed structured tree T is labelled with
permutations in C, and that the permutation (<,≺) is obtained by delayed
substitution from C.

6.4.2 Distinguishability. The linear order ≺ is defined on the leaves of T .
We extend it to a partial order on all nodes of T where x ≺ y iff L(x) ≺ L(y),
i.e. all descendants of x are strictly before all descendants of y for ≺.
Remark 6.23. Let x, y be nodes in T , and t their least common ancestor. If t
is at distance at least 2 of both x and y, then x, y are comparable under ≺,
meaning either x ≺ y or y ≺ x. In particular, if x, y are at the same level in T
but are not siblings, then they are comparable by ≺.

Being incomparable by ≺ is not an equivalence relation, even when re-
stricted to siblings: one may have three siblings x, y, z such that x ≺ z,
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t
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Figure 6.4: Indistinguishability for the grandchildren of a node t. The values
and arrows represent the linear order ≺t, and colours represent equivalence
classes of indistinguishability.

but L(x), L(y), resp. L(y), L(z) are interleaving for ≺. We can however define
an equivalence relation by considering how other nodes can separate siblings.

Consider x, y two children of a node t, and v ∈ L(T )\L(t). By Remark 6.23,
v is comparable with both x and y under ≺. We say that x and y are distin-
guished by v if x ≺ v ≺ y or y ≺ v ≺ x. One can check that if v ∈ L(T ) \ L(t)
distinguishes x, y, it must be a descendant of a cousin of x and y. Finally, we
call x, y indistinguishable, denoted x ∼ y, if x, y are siblings with parent t, and
no v ∈ L(T ) \ L(t) distinguishes x and y. See Figure 6.4 for an example.
Lemma 6.24. Indistinguishability is an equivalence relation.

Proof. Clearly ∼ is reflexive and symmetric. Let x, y, z be siblings with par-
ent t, and suppose that v distinguishes x, z, say x ≺ v ≺ z. Since v ̸∈ L(t),
y and v are comparable. Thus it either holds that v ≺ y, in which case v
distinguishes x, y, or y ≺ v, and v distinguishes y, z. By contraposition, ∼ is
transitive.

Lemma 6.25. Let x, y be grandchildren of t such that x ̸∼ y. Then x ≺ y if
and only if x ≺t y.

Proof. Between cousins with grandparent t, the orderings ≺ and ≺t coincide by
definition of the realisation. Thus we only need to consider the case where x, y
are siblings distinguished by some v, say x ≺ v ≺ y. Let v′ be the cousin of x, y
which is an ancestor of v. Being cousins, v′ is comparable with both x and y
under ≺. It follows that x ≺ v′ ≺ y. Using once again that ≺ and ≺t coincide
for cousins, this implies x ≺t v

′ ≺t y, hence ≺ and ≺t coincide for the pair x, y
as desired.

Indistinguishability is compatible with ≺ as follows.
Lemma 6.26. Let A be an equivalence class of ∼. Then among L(T ), the
subset L(A) :=

⋃
x∈A L(x) is an interval of ≺.

Proof. Let A be an equivalence class of ∼. All elements of A are siblings.
Consider t their parent. Let x, z ∈ L(A) and y ∈ L(T ) \ L(A) be leaves, and
suppose for a contradiction that x ≺ y ≺ z. Let x′, z′ be the ancestors in A
of x, z respectively. We have two cases to consider.
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1. If y is not a descendant of t, then x′ and z′ are comparable by ≺ with y,
and it must be that x′ ≺ y ≺ z′. Thus x′, z′ are distinguished by y, a
contradiction.

2. Otherwise, y is a descendant of some child y′ of t, which is distinguishable
from x′ and from z′. Thus there exist v1, v2 ̸∈ L(t) such that x′ ≺ v1 ≺ y′

and y′ ≺ v2 ≺ z′. But then we also have x′ ≺ v1 ≺ z′, a contradiction.

6.4.3 Factoring delayed substitutions. We will now prove that any
delayed substitution can be decomposed into products of substitutions.
Lemma 6.27. Let C be a class of permutations closed under substitution, pat-
terns, and inverse. Then any permutation obtained by delayed substitution
from C is in C3.

Proof. Let (X,<,≺) be the realisation of a delayed tree (T,<, {≺t}t∈T ) with
leaves L(T ) = X, labelled in C. The linear order < is compatible with T ,
while ≺ is the realisation of the delayed substitution.

Let us define an intermediate linear order <′ on X. For each internal node t
of T and for each child x of t, choose an arbitrary descendant ft(x) ∈ X of x.
Then, on the children of t, define x <′

t y if and only if ft(x) ≺ ft(y). These local
orders extend to a linear order <′ on X, which by construction is compatible
with T .

Claim 6.28. The permutation (<,<′
t) on the children of t is in C.

Proof. Let A be the set of children of t. For x ∈ A, call g(x) the sole child of x
which is an ancestor of ft(x). Thus g(x) is a grandchild of t. For x ̸= y ∈ A,
we have g(x) < g(y) if and only if x < y, by compatibility of < with T .
Furthermore, the closest ancestor of ft(x) and ft(y) is t, hence ft(x) ≺ ft(y)
if and only if g(x) ≺t g(y) by definition of ≺. Thus the permutation (<,<′

t)
on A is isomorphic to the permutation (<,≺t) on g(A), which is a pattern
of the permutation (<,≺t) on the grandchildren of t. The latter is in C by
hypothesis. ■

Since C is closed under substitution, it follows that (X,<,<′) is in C.
We now quotient the tree T by indistinguishability. Since ∼ can only

identify siblings, the quotient T ′ = T/ ∼ naturally has a tree structure. Fur-
thermore, since the leaves of T are required to be single children, no two leaves
are identified, hence the set of leaves of T ′ is exactly X.

Claim 6.29. The tree T ′ is compatible with both <′ and ≺.

Proof. Lemma 6.26 precisely proves that T ′ is compatible with ≺: each node
of T ′, which is an equivalence class of ∼, corresponds to an interval of (X,≺).

Since <′ is compatible with T , to show that it is also compatible with the
quotient T ′ = T/ ∼, it is sufficient to consider only the children of a given t ∈ T .
That is, it is enough to prove that among the children of t, any equivalence
class A for indistinguishability is an interval for <′. Suppose for a contradiction
that there are children x <′ y <′ z of t with x, z ∈ A and y ̸∈ A. Since x ̸∼ y,
it must be that x ≺ y or y ≺ x, but the latter is impossible as it would imply
y <′ x. Thus x ≺ y, and similarly y ≺ z, contradicting Lemma 6.26. ■
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Thus the permutation (X,<′,≺) is obtained by substitution along the
tree T ′. It only remains to show that this structured tree is labelled with
permutations in C2.

Fix a node s̄ ∈ T ′, which in T is an equivalence class of ∼. Let t ∈ T
be the parent of the nodes of s̄ (which is well defined as only siblings can be
equivalent for ∼). The children in T ′ of s̄ are equivalence classes of grand-
children of t in T . Denote by x̄1, . . . , x̄k these children, where the representat-
ives R = {x1, . . . , xk} are grandchildren of t. Recall that L(xi) ⊆ X is the set
of leaves descendant of xi. The subsets L(x1), . . . , L(xk) are non-interleaved for
< and <′ because these linear orders are compatible with T . Furthermore, they
are non-interleaved for ≺ because the xi are pairwise distinguished. Thus R
is equipped with the three linear orders <,<′,≺. In the structured tree T ′

which realises (X,<′,≺), s̄ is labelled with (R,<′,≺), hence we only need the
following to conclude.

Claim 6.30. The permutation (R,<′,≺) is in C2.

Proof. We decompose the permutation (R,<′,≺) into (R,<′, <) and (R,<,≺).
This may at first seem counterproductive, as we go back to the initial permuta-
tion (<,≺), but the point is that we now only consider a small subset R, rather
than all X.

We already know that (X,<,<′) is in C, hence so is (R,<′, <), which is a
pattern of its inverse. Furthermore, the xi are pairwise distinguished grand-
children of t, hence the linear orders ≺ and ≺t coincide on R by Lemma 6.25.
Thus (R,<,≺) is a pattern of (<,≺t), which is in C. ■

As (X,<,≺) factorises into (X,<,<′) ∈ C and (X,<′,≺) ∈ C2, it is in C3.

6.4.4 Constructing delayed structured trees. Finally, we show how to
express any permutation as a delayed substitution.
Lemma 6.31. For any biorder σ = (X,<,≺), there is a delayed structured
tree (T,<, {≺t}t∈T ) whose realisation is σ satisfying the following:

1. For any node t ∈ T , the linear ordering ≺t of its grandchildren is obtained
by a choice of representatives. That is, if A is the set of grandchildren
of t, then there is a mapping to leaves f : A → X with f(a) descendant
of a such that for a, b ∈ A, a ≺t b if and only if f(a) ≺ f(b).

2. If x, y are consecutive siblings along <, then x and y are distinguishable
for ≺, except possibly if x and y do not have any other sibling.

In the previous statement, Condition 1 is a technical requirement ensuring
that the permutations labelling T are patterns of σ, so that hypotheses on σ
can also be applied to the former. Condition 2 will be crucial in the proof of
Theorem 6.21. Informally, it ensures that the subpermutations {(<,≺t)}t∈T

labelling T are strictly simpler than the global permutation (X,<,≺).

Proof. We construct the tree T inductively starting from the root, choosing
for each internal node t the interval L(t) ⊆ X of < which at the end of the
construction will be the set of leaves descendant of t. We maintain the condition
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that whenever t′ is a child of t and x ∈ X \ L(t), then x does not split L(t′),
i.e. either x ≺ L(t′) or x ≻ L(t′).

Initially, there is only the root r with L(r) = X. If t and L(t) have already
been constructed, then we create the children of t by the following rules.

• If L(t) = {x} is a singleton, we add a leaf x as the sole child of t, and the
construction stops there for this branch.

• If L(t) has size at least 2 and is an interval of (X,≺) (in addition to being
one for <), then we add two children u, v to t and split L(t) arbitrarily
into two intervals L(u), L(v) for <. Remark that this case occurs at least
for the root r.

If x ̸∈ L(t), then x does not split L(t), hence a fortiori it splits neither L(u)
nor L(v), as required. On the other hand, this means that u and v will
be indistinguishable in T , which is why condition 2 is waived for nodes
with only two children.

• Otherwise, enumerate L(t) as x1 < · · · < xk. Say that a subset A ⊆ L(t)
is a local module of L(t) if no y ̸∈ L(t) splits A (for ≺). We greedily parti-
tion L(t) into local modules A1, . . . , Al: A1 is {x1, . . . , xi1} with i1 chosen
maximal such that A1 is a local module, then A2 is {xi1+1, . . . , xi2} with
again i2 maximal, etc.

By construction, no element y ̸∈ L(t) can split any Ai. Further, Ai, Ai+1

are distinguished (in fact, the last element of Ai is distinguished from
the first element of Ai+1), as otherwise Ai could have been extended.
Also, the number l of local modules in this partition is at least 2, as
otherwise L(t) would be an interval of (X,≺) and we would fall in the
previous case.

With this tree constructed, consider a node t ∈ T and u, v two grandchil-
dren of t which are not siblings. Then the condition maintained during the con-
struction ensures that no x ∈ L(u) splits L(v), and symmetrically no y ∈ L(v)
splits L(u). It follows that either L(u) ≺ L(v) or L(v) ≺ L(u). In short, the
order ≺ is well defined between cousins in T .

Now, define the linear order ≺t on the grandchildren of t through an arbit-
rary choice of representatives, as required in condition 1 of the lemma. Then
for cousins u, v, we have u ≺t v if and only if u ≺ v. In turn, this implies that
the realisation of (T,<, {≺t}t∈T ) is the permutation (X,<,≺) from which we
started. Condition 1 is satisfied by definition of ≺t, and condition 2 was checked
during the construction of T .

6.5 Partitions and mixity

In this section, we introduce tools to further decompose a single level of a
delayed structured tree. Once again, the idea is based on results of Bourneuf
and Thomassé [23, Section 4], but working with permutations gives stronger
conclusions and simpler proofs.
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6.5.1 Preliminaries.

Colouring and degeneracy Recall that a k-colouring of a graph G is a
map c : V (G) → [k] which assigns distinct colours to adjacent vertices. Equi-
valently, it is a partition into k colour classes c−1(1), . . . , c−1(k), each of which
is an independent set.

A graph G is k-degenerate if G and all its subgraphs have a vertex of degree
at most k. A well-known characterisation is that G is k-degenerate if and only
if there is an acyclic orientation of the edges of G such that vertices have
out-degree at most k.
Lemma 6.32 (Folklore). Any k-degenerate graph G can be (k + 1)-coloured.

A closely related parameter is the maximum edge density of G, that is
the maximum over all subgraphs H ⊂ G of |E(H)|

|V (H)| . It is easy to see that
k-degenerate graphs have maximum edge density at most k, and conversely
graphs with maximum edge density k are 2k-degenerate. If G admits an ori-
entation (possibly with cycles) in which vertices have out-degree at most k,
then its maximum edge density is at most k.

Circle graphs Let I be a family of intervals of some linear order <. Two
intervals A,B overlap if they intersect, but neither contains the other. The
overlap graph of I is the graph whose vertex set is I, and where intervals are
adjacent exactly when they overlap. Overlap graphs are also known as circle
graphs, because they can be described by the intersections of a set of chords of
a circle.

We will show that overlap graphs without large cliques or bicliques can be
coloured with few colours: they are in fact degenerate. The complete graph
on k vertices is denoted by Kt, and the bipartite complete graph with t vertices
on each side by Kt,t.
Lemma 6.33. Any circle graph containing neither Kt nor Kt,t as subgraph
has maximum edge density at most 2(t− 1)2.

Proof. Let I be a family of intervals whose overlap graph has no Kt or Kt,t sub-
graph. We define an orientation of the edges with out-degree at most 2(t−1)2.

Consider two overlapping intervals A,B ∈ I. Relative to the edge AB, say
that C ∈ I is a private ancestor of A if A ⊆ C and B ̸⊆ C, and symmetrically
with B. By convention, A and B are also private ancestors of themselves.
Claim 6.34. Every private ancestor of A overlaps every private ancestor of B.

Proof. Let C,D be private ancestors of A,B respectively, with possibly C = A
or D = B. Pick x ∈ A∩B (which is non-empty as they overlap), and y ∈ A\D
(non-empty since D is private to B), and symmetrically z ∈ B \ C. Then,
because A ⊆ C and B ⊆ D, we also have x ∈ C ∩D, y ∈ C \D, and z ∈ D \C,
hence C and D overlap. ■

Thus, there is a biclique between A and its private ancestors on the one
hand, and B and its private ancestors on the other. Since the overlap graph
does not contain Kt,t as subgraph, it follows that either A or B has less than t
private ancestors. We orient the edge AB towards A if it has less than t private
ancestors, and towards B otherwise.
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Let us bound the out-degree of this orientation. Fix I ∈ I an interval with
endpoints x < y, and consider N+(I) the set of A ∈ I with an edge oriented
from I to A. Any A ∈ N+(I) contains either x or y, but not both. Let X
be the subset of intervals in N+(I) containing x, and consider the inclusion
poset (X,⊆).

Claim 6.35. The poset (X,⊆) does not contain a chain of length t.

Proof. If A1 ⊊ · · · ⊊ As are in X, then A1 overlaps I, and y witnesses that
each Ai is a private ancestor of A1 w.r.t. the edge A1I. Since this edge is
oriented from I to A1, we know that A1 has less than t private ancestors,
hence s < t. ■

Claim 6.36. The poset (X,⊆) does not contain an antichain of size t.

Proof. If A,B ∈ X are incomparable for inclusion, then they overlap because
both contain x. Thus an antichain in the poset (X,⊆) is a clique in the overlap
graph. ■

By Dilworth’s theorem, it follows from the two claims that |X| ⩽ (t− 1)2.
The same reasoning applies to intervals in N+(I) containing y, and we ob-
tain |N+(I)| ⩽ 2(t− 1)2.

While Lemma 6.33 proves degeneracy, we only use it to construct colourings.
For this purpose, we could instead use a much more general result of Davies
and McCarty: circle graphs without Kt as subgraph (but possibly with Kt,t)
can be coloured with O(t2) colours [36], later improved to O(t log t) in [35].
Their proof is however far more complex.

Splitting and mixing Let (X,≺) be a linear order, and P a partition of X.
For any subsets X1, X2 ∈ P, we distinguish three cases:

1. X1, X2 do not interleave, i.e. X1 ≺ X2 or X2 ≺ X1.

2. Restricted to X1 ∪X2, X1 is an interval which is said to split X2 in two,
written X1 ⊏ X2, or vice versa.

3. Neither X1 nor X2 is an interval in X1 ∪X2, and we say that X1, X2 are
mixed.

Assume now that no pair of subsets in P is mixed—we then say that P
is non-mixed. For any X1 ∈ P, let X1 denote the interval closure of X1, i.e.
the interval of (X,≺) between the minimum and maximum of X1. Then we
have X1 ≺ X2 if and only if X1 ≺ X2, and X1 ⊏ X2 if and only if X1 ⊂ X2. In
particular, either X1, X2 are disjoint, or one contains the other. Thus (X,P)
induces a laminar family, meaning that subsets in P are the nodes of a rooted
forest F , where X1 is a descendant of X2 if and only if X1 ⊏ X2. Furthermore,
the ordering ≺ is defined for any pair of subsets X1, X2 ∈ P which are not
in an ancestor–descendant relationship. Thus ≺ gives to F the structure of
an ordered forest: each connected component of F is an ordered tree, and ≺
orders the components.
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6.5.2 Non-mixed partitions. We now consider a biorder (X,<,≺), and a
partition P of X into intervals for <. In later proofs, such a structure will arise
from delayed substitutions as follows: Given a node t in a delayed structured
tree, X is the set of grandchildren of t, the partition P is the one given by
the children of t, < is the linear order compatible with the tree, while ≺ is the
linear order on the grandchildren of t given as part of the delayed structured
tree. Our goal is to decompose this biorder into simpler permutations.
Lemma 6.37. Let C be a substitution-closed class of permutations. Consider
a biorder (X,<,≺) and a partition P of X into intervals of <. Suppose that P
is non-mixed w.r.t. ≺, and that

1. for each part P ∈ P, the induced permutation (P,<,≺) is in C, and
2. there exists a transversal R of P (i.e. a choice of a single element in each

part of P) such that the permutation (R,<,≺) is in C.

Then (X,<,≺) is in S2◦C, where S denotes the class of separable permutations.

Proof. Let us define an intermediate linear order <′ on X as follows:

• each part P ∈ P is an interval of (X,<′),
• inside each part P , the linear order <′ coincides with ≺, and
• between parts P1, P2 ∈ P, the order is given by the representatives in R,

i.e. if xi is the sole element in Pi∩R, then P1 <
′ P2 if and only if x1 ≺ x2.

Claim 6.38. The permutation (X,<,<′) is in C.

Proof. The permutation inside a given part P ∈ P is (P,<,≺), which is
known to be in C. Furthermore, the permutation on the set P is isomorphic
to (R,<,≺), which is also in C. Therefore (X,<,<′) can be expressed as a
substitution from permutations in C, with a structured tree of depth 2. ■

We now focus on (X,<′,≺), and will prove that this permutation is obtained
by substitution from 2-shuffles. Such permutations are in S2 by Lemma 6.22
since S is closed under substitution.

Recall the structure on (X,≺) and P described in section 6.5.1: Since the
partition P is non-mixed w.r.t. ≺, the splitting partial order ⊏ gives P the
structure of a rooted forest F , which furthermore is compatible with the linear
order ≺. We construct a tree T from F by

• adding a new root, whose children are the roots of the connected com-
ponents of F , and

• for each node P ∈ P, adding each element x ∈ P as a new child of P .

The leaves of T are exactly the elements of X, and we will describe (X,<′,≺)
as a substitution along T . See Figure 6.5 for an illustration.
Claim 6.39. The linear orders <′ and ≺ are compatible with T .

Proof. Consider a node t of T , other than the leaves and the root. Thus t can
be identified with a part P ∈ P. Then it is simple to check that L(P ), the set
of leaves descending from P in T , is exactly

⋃
P ′⊑P P

′, i.e. the union of parts
which are descendants of P in F . We claim that this is an interval for both <′

and ≺.
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1 14 410 10

2 23 35 59 9

6 67 78 8

Figure 6.5: The tree T , ordered by ≺ (left) and <′ (right) respectively. Leaves
are elements of X, and their numbering is according to ≺. Internal nodes
correspond to parts in P, with each colour representing a part of P. The
transversal R is indicated by circled leaves, and decides how <′ orders the
parts.

Suppose otherwise towards a contradiction. Then there are u,w ∈ L(P )
and v ̸∈ L(P ) such that either u ≺ v ≺ w or u <′ v <′ w. Let U, V,W be the
parts of P containing u, v, w respectively. We have U,W ⊑ P , and V ̸⊑ P .
Recall that P denotes the interval between the minimum and maximum of P
for ≺. Then we have U,W ⊆ P , while V is disjoint from P . Under these
conditions and since P is an interval of ≺, it cannot be that u ≺ v ≺ w .

For <′, we also need to consider the representative v′ ∈ V ∩ R. For the
same reasons as above, we have either v′ ≺ U ∪ W , or U ∪ W ≺ v′, which
implies V <′ U ∪W or U ∪W <′ V respectively. Either way, u <′ v <′ w is
impossible. ■

To conclude the proof, we only need to show that for any internal node P
of T , the permutation (X,<′,≺) restricted to children of P is a 2-shuffle. We
partition the children of P in two categories: leaves (which are in X), and
internal nodes (which are in P). We claim that (X,<′,≺) restricted to either
of these categories is the identity.

1. The leaves which are children of P are exactly the elements of P , and
inside P the orderings <′ and ≺ coincide by construction.

2. The parts of P which are children of P in T are also the children of P
in F . We know that they are totally ordered under ≺, i.e. if A,B ∈ P
are children of P , then either A ≺ B or B ≺ A. By construction of <′,
if A ≺ B (resp. B ≺ A) then A <′ B (resp. B <′ A). It follows from
these two remarks that <′ and ≺ coincide on the children of P in F .

6.5.3 Separating mixed parts. The previous lemma shows how to de-
compose a permutation which is non-mixed w.r.t. a given partition. We will
now generalise it to permutations with few pairs of mixed parts. Let (X,<)
be a linear order and P a partition of X. The associated mixed graph is the
graph with vertex set P where two parts A,B ∈ P are adjacent when they are
mixed.
Lemma 6.40. Let G be the mixed graph of a partition, and assume that it
contains neither Kt nor Kt,t as subgraph. Then G is (4t2 − 1)-degenerate.

Proof. Let G = (P, E) be the mixed graph of a partition P of a linear or-
der (X,<). We partition the edges of G into E = E1 ⊎ E2 as follows:
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A
B1

B2

B3

C
D

y1 y2y3

Figure 6.6: Illustration of the proof of Lemma 6.40. Each row represents a
part of P ∈ P: the dots are elements of P , and line is the interval P . The
left-to-right order is ≺. The Bis are out-neighbours of A in the graph (P, E1),
and yi ∈ Bi ∩ A witnesses that A and Bi are mixed. For any i ̸= j, yi, yj
together with the endpoints of Bi, Bj ensure that Bi and Bj are mixed.
The parts C,D are not out-neighbours of A in (P, E1): C satisfies A ⊂ C but
is not mixed with A, and A and D overlap, hence the edge AD is in E2, not E1.

1. An edge AB ∈ E is in E1 if the interval closures satisfy A ⊂ B or B ⊂ A.

2. The remaining edges are in E2. Thus, a pair (A,B) ∈ P is an edge in E2

if and only if A and B overlap.

The graph (P, E2) is precisely the overlap graph of the interval closures of parts
of P. Thus by Lemma 6.33, its maximum edge density is at most 2(t − 1)2.
We will show that (P, E1) is (t − 1)-degenerate, hence has maximum edge
density at most t− 1. Then, their union (P, E) has maximum edge density at
most t− 1 + 2(t− 1)2 ⩽ 2t2 − 1, hence it is (4t2 − 1)-degenerate as desired.

To this end, we define an acyclic orientation of (P, E1) for which the out-
degree is at most t− 1. If AB is an edge in E1 and A ⊂ B, we orient it from A
to B. We claim that for any part A ∈ P, the out-degree of A in (P, E1) is at
most t − 1. Indeed, let B1, . . . , Bk be the out-neighbours of A, i.e. each Bi is
mixed with A and A ⊂ Bi. We will show that A,B1, . . . , Bk is a clique in (P, E)
which implies the claim as this graph has no clique of size t. To this end, we
need to show that any two Bi ̸= Bj are mixed. Without loss of generality,
assume that Bi ̸⊂ Bj , hence there is some x ∈ Bi outside of Bj , say x < Bj .
On the other hand, since Bi is mixed with A, there must be yi ∈ Bi ∩ A, and
thus yi ∈ Bi ∩ Bj . Thus we have two points in Bi, one inside the interval
closure of Bj and one outside. This implies that Bi and Bj are mixed. See
Figure 6.6 for an illustration.

Combining this with Lemma 6.37, we obtain the following.
Lemma 6.41. Let C be a class of permutations closed under substitution, sym-
metry, and taking patterns. Let (X,<,≺) be a biorder, and P a partition of X
into intervals of <, satisfying the following:

1. The mixed graph of P for the linear order (X,≺) does not contain Kt

or Kt,t subgraphs.

2. For each part P ∈ P, the permutation (P,<,≺) is in C.

3. There exists a transversal R of P (i.e. a choice of a single element in
each part of P) such that the permutation (R,<,≺) is in C.
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Then the permutation (X,<,≺) is in Sk+2 ◦ C ◦ Sk, with k = ⌈2 log t⌉+ 2.

Proof. By Lemma 6.40, the mixed graph of P is (4t2 − 1)-degenerate, hence
4t2-colourable by Lemma 6.32. Fix a proper 4t2-colouring, and for any colour c
call Pc be the set of parts of colour c and Xc =

⋃
P∈Pc

P the points contained
therein. Since the colouring is proper, no two parts of Pc are mixed. Thus the
restricted biorder (Xc, <,≺) with the partition Pc satisfies the conditions of
Lemma 6.37, and the permutation (Xc, <,≺) is in S2 ◦ C. Hence, (X,<,≺) is
a 4t2-shuffle of permutations in S2 ◦ C. We conclude by applying Lemma 6.22
with k =

⌈
log(4t2)

⌉
= ⌈2 log t⌉+ 2.

6.6 Reducing the size of mixed divisions

We now reach the core of the proof of Theorem 6.21: using the tools developed
in sections 6.4 and 6.5, we decompose a given permutation σ into a number
of strictly simpler permutations, in the sense of some parameter equivalent to
twin-width.

This parameter is the size of mixed divisions, a variant of the rank divisions
of Chapter 3. The idea of mixed divisions in fact predates rank divisions: the
former were used in [19] in the original form of Theorem 3.9, while the latter
were only introduced in [17]. The idea of decomposing a structure into several
ones which smaller mixed divisions is due to Pilipczuk and Sokołowski [79].

A 0–1 matrix M is called horizontal if each row r of M is constant, i.e.
all entries in r are equal. Equivalently, M is horizontal if and only if all its
columns are equal. Symmetrically, M is called vertical if each of its columns is
constant, i.e. all its rows are equal. Note that a matrix which is both horizontal
and vertical is constant. Finally, M is mixed if it is neither horizontal nor
vertical. Remark that if X1, X2 are disjoint subsets of a linear order (X,<),
then X1, X2 are mixed in the sense of section 6.5 if and only if the adjacency
matrix of < restricted to rows in X1 and columns in X2 is mixed.

A k-mixed division in a matrix M is a k-division in which every cell is
mixed. For k ⩾ 2, a rank-k division is also a k-mixed division. Using the very
same arguments as Lemma 3.21, one can show the following.
Lemma 6.42 [19, Theorem 5.4]. Consider a binary structure S = (V,R) and
an ordering < of V compatible with some contraction sequence of width k.
Then A(R,<) has no (2k + 4)-mixed division.

Given a permutation σ = (X,<,≺), consider the adjacency matrix A(≺, <):
this is the adjacency matrix of the relation ≺, with rows and columns ordered
by <. Assume that A(≺, <) has no k-mixed division, or in short is k-mixed free.
We will first show how to decompose k-mixed free permutations by induction
on k. The base case is the following simple remark.
Lemma 6.43. Any 2-mixed free permutation is separable.

Proof. A permutation which is not separable contains either 3142 or 2413 as
pattern, and both have 2-mixed divisions in their adjacency matrices. See
Figure 6.7 for the adjacency matrix of 3142; that of 2413 is its transpose.

Let Ak denote the class of k-mixed free permutations, and recall that S is
the class of separable permutations.
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4

1
1
0
12

2

0
1
0
0

Figure 6.7: Adjacency matrix of the permutation σ = 3142, which contains
a 2-mixed division represented by dashed lines. The matrix has a 1 at the
intersection of the ith row and jth column if and only if σ(i) < σ(j).

Theorem 6.44 [12]. If Ak−1 ⊆ Sr for some r ∈ N, then Ak ⊆ Ss for

s = 3r + 12 ⌈log k⌉+ 28.

Proof. Assume that Ak−1 ⊆ Sr, and consider σ = (X,<,≺) ∈ Ak a k-mixed
free permutation. Denote by first and last the minimum and maximum of X
w.r.t. <. For the linear order ≺, first and last split X into three intervals as

X1 ≺ first ≺ X2 ≺ last ≺ X3,

up to swapping first and last. We consider each Xi independently, before re-
combining X1, X2, X3, and {first, last}. Let X ′ = Xi be one of these intervals,
and σ′ = (X ′, <,≺) the induced permutation.

Let (T,<, {≺t}t∈T ) be a delayed structured tree for σ′ given by Lemma 6.31.
Consider any internal node t ∈ T , let A be its set of children, and consider a
transversal S ⊆ X ′ of A, i.e. all elements of S are descendants of t, and each
child v ∈ A has exactly one descendant in S.

Claim 6.45. The transversal S admits a partition into two parts S = SL ⊎ SR

such that (<,≺) restricted to each of SL, SR is (k − 1)-mixed free.

Proof. Enumerate the children of t as A = {v1 < · · · < vℓ}, and call xi
the descendant of vi in S. We can assume ℓ > 2 as the claim is otherwise
trivial. Then condition 2 of Lemma 6.31 gives that for all i ∈ {1, . . . , ℓ − 1},
vi and vi+1 are distinguishable. Thus, we can choose some yi ∈ X ′ \ L(t) such
that vi ≺ yi ≺ vi+1, or vi+1 ≺ yi ≺ vi.

If yi < L(t) (resp. yi > L(t)) we say that vi is split to the left (resp. to the
right). Thus every vi except vℓ is split either to the left or to the right. We
partition S accordingly, so that SL (resp. SR) contains xi only if vi is split to
the left (resp. to the right). We place xℓ in either SL or SR arbitrarily. We will
prove that (SL, <,≺) is (k − 1)-mixed free, the case of SR being symmetrical.

Suppose for a contradiction that (SL, <,≺) has a (k−1)-mixed division. It
is given by two partitions of (SL, <) into (k − 1) intervals, say

R = {R1 < · · · < Rk−1} and C = {C1 < · · · < Ck−1}

such that for every i, j ∈ [k − 1], Ri and Cj are mixed in the linear or-
der ≺. Note in particular that all Ri and Cj have size at least 2. Start-
ing from R and C, we build two new partitions R′ = {R′

0 < · · · < R′
k−1}

and C′ = {C ′
0 < · · · < C ′

k−1}, which will form a k-mixed division in σ.
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• The parts R′
0 and C ′

0 are equal, they consist of first and all splitting
elements yi satisfying yi < L(t), i ∈ [ℓ− 1].

• For each i ⩾ 1, consider xj the minimum of Ri w.r.t. <. Since Ri has
size at least 2, we have j < ℓ, and either xj+1 ∈ Ri, or xj+1 is not in SL.
Either way, we define R′

i = Ri ∪ {xj+1}. Note here that xj is split to the
left, hence yj ∈ C ′

0.

• The same operation is applied to C′.

After this modification, all elements of R′
0 are smaller than L(t) for <, hence R′

is still a partition of a subset of X into intervals of <, and similarly with C′.
The parts which were originally in R, C have only increased, hence for i, j ⩾ 1,
R′

i and C ′
j are mixed. Further, R′

0 and C ′
0 are equal and are not singletons.

Since we are considering the adjacency matrix of a linear order, this implies
that the corresponding cell R′

0 × C ′
0 is mixed. We claim that R′

0 is mixed
with C ′

i for any i > 0, and symmetrically for C ′
0, R

′
i, which implies that the

new R′, C′ form a k-mixed division in (a submatrix of) Mσ, a contradiction.
Indeed, let xj be the smallest element of Ri, so that yj ∈ C ′

0 distinguishes xj
and xj+1, i.e. either xj ≺ yj ≺ xj+1 or xj+1 ≺ yj ≺ xj . By construc-
tion of X ′, first is not interleaved with xj , xj+1 (or any elements of X ′), i.e.
either first ≺ xj , xj+1 or xj , xj+1 ≺ first. The above implies that {first, yj}
and {xj , xj+1} are mixed. The former is contained in C ′

0, while the latter is
contained in R′

i, proving the claim.
The same reasoning also holds for SR, using last instead of first and adding

parts R′
k and C ′

k instead of R′
0 and C ′

0. ■

It follows from Claim 6.45 that for any transversal S of the children of a
node t, the permutation (S,<,≺) is a 2-shuffle of permutations in Ak−1, hence
is in Sr+2 by Lemma 6.22.

Fix now a node t ∈ T , and call A the set of grandchildren of t. Consider the
permutation (A,<,≺t), and the partition P of A induced by the children of t.
Recall that Sr+2 is closed under substitution, inverse and taking patterns. Let
us check that the three conditions of Lemma 6.41 are satisfied.

1. If the mixed graph of P for the linear order (A,≺t) contains either Kk

or Kk,k as a subgraph, then the corresponding parts form a k-mixed
division in the adjacency matrix of (A,<,≺t). We know that the lin-
ear order ≺t is defined through a choice of representatives, meaning
that (A,<,≺t) is a pattern of (X,<,≺). Then (X,<,≺) would also
have a k-mixed division, a contradiction.

2. Fix a part P ∈ P. The elements of P are the children of some child t′ of t,
thus the restricted permutation (P,<,≺t) is isomorphic to (S,<,≺) for
some transversal S of P . By Claim 6.45 applied on t′, this permutation
is in Sr+2.

3. Similarly, applying Claim 6.45 this time to t shows that for any trans-
versal S of P, the permutation (S,<,≺t) is in Sr+2.
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It follows from Lemma 6.41 that the permutation (A,<,≺t) is in Sr′ with

r′ = (r + 2) + 2 (⌈2 log k⌉+ 2) + 2

⩽ r + 4 ⌈log k⌉+ 8.

Next, we apply Lemma 6.27 to the delayed structured tree T and conclude
that (X ′, <,≺) is in S3r′ . Recall that X ′ was one of three intervals of (X,≺)
defined by first and last. Combining the permutations on these three inter-
vals and on {first, last}, we finally find that σ = (X,<,≺) is a 4-shuffle of
permutations in S3r′ . By Lemma 6.22, this implies that σ is in Ss for

s = 3r′ + 4

⩽ 3r + 12 ⌈log k⌉+ 28.

Recursively applying Theorem 6.44 gives the following bound on the length
of factorisations of k-mixed free permutations.
Corollary 6.46 [12]. Any k-mixed free permutation factorises into a product
of at most 4 · 3k separable permutations.

Proof. Lemma 6.43 and Theorem 6.44 give that k-mixed free permutations are
product of at most f(k) separable permutations for any function f satisfying

f(2) ⩾ 1

and f(k) ⩾ 3f(k − 1) + 12 ⌈log k⌉+ 28.

This is satisfied for
f(k) = 4 · 3k − 6 ⌈log k⌉ − 23.

Indeed, we have

f(2) = 4 · 32 − 6 ⌈log 2⌉ − 23 = 7.

and f(k) = 4 · 3k − 6 ⌈log k⌉ − 23

⩾ 4 · 3k − 18(1 + ⌈log(k − 1)⌉) + 12 ⌈log k⌉ − 23

= 3
(
4 · 3k−1 − 6 ⌈log(k − 1)⌉ − 23

)
− 18 + 12 ⌈log k⌉+ 2 · 23

= 3f(k − 1) + 12 ⌈log k⌉+ 28.

Thus we are able to decompose permutations which have no large mixed
division. It only remains to generalise this to permutations with bounded
twin-width. We will use Lemma 6.42 to show that permutations with bounded
twin-width can be factorized as two permutations with no large mixed divisions.

It is worth noting that a permutation with bounded twin-width may contain
arbitrarily large mixed divisions. This is the case of 2-shuffles: if < is the
usual order on [n], and ≺ orders all odd integers before the even ones, then
the adjacency matrix of A(≺, <) contains an (n/2)-mixed division. Thus the
permutation σ = (<,≺) has arbitrary mixed minors; it does however avoid the
pattern 321, hence has small twin-width. In this specific example, the inverse
permutation σ−1 = (≺, <) is 4-mixed free, but one could combine σ and σ−1

to obtain an example where the inverse also has arbitrary mixed minors.
In general, we need to introduce a third linear order to obtain a k-mixed

free structure.
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Figure 6.8: A factorisation of 163524 into three separable permutations repres-
ented as a path system. The ordering of vertices is left-to-right, then bottom-
to-top.

Lemma 6.47. Any permutation σ with tww(σ) = k factorises as

σ = σ2 ◦ σ−1
1

where σ1, σ2 are (2k + 4)-mixed free.

Proof. Represent σ as a biorder (X,<1, <2). Consider a contraction sequence
of width k for σ, and choose <3 to be any linear ordering of X compat-
ible with this contraction sequence. Then by Lemma 6.42, both A(<1, <3)
and A(<2, <3) are (2k+4)-mixed free. Defining permutations σ1 = (X,<3, <1)
and σ2 = (X,<3, <2), we obtain the result.

The main result of this chapter immediately follows from Corollary 6.46
and Lemma 6.47.
Theorem 6.21 [12]. For any twin-width bound t ∈ N, there is a length k ∈ N
such that any permutation σ with tww(σ) ⩽ t factorises as a composition
σ = σ1 ◦ · · · ◦ σk with σi separable.

6.7 Encoding graphs and permutations

In the final section of this chapter, we will show how Theorem 6.21 translates
to results on graphs.

Theorem 6.21 shows that any permutation σ can be constructed by start-
ing from a fixed based class (separable permutations) and using an operation
(composition) whose complexity (the number of permutations to compose) is
allowed to depend on tww(σ) only. To adapt this to graph, we need to replace
composition by a graph construction. To this end, we first define an encoding
of compositions as ordered graphs.

6.7.1 Path system representations. Let σ1, . . . , σm ∈ Sn be permuta-
tions. The path system representation of the product σm ◦ · · · ◦ σ1 consists of
the ordered matchings Mtσ1

, . . . ,Mtσm
joined together by identifying one side

of Mtσi with the other of Mtσi+1 . Precisely, it is the ordered graph (V,E,<)
with vertex set V = [0,m] × [n] ordered lexicographically by <, and with an
edge between (i− 1, x) and (i, σi(x)) for every i ∈ [m], x ∈ [n]. See Figure 6.8
for an example..
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We will prove that if all the permutations σi have bounded twin-width, then
the path system representation has bounded twin-width, independently of the
length m. The proof use permutation matrices; recall from Theorem 6.6 that
permutations with small twin-width have no large grid in their matrices.
Lemma 6.48 [14, section 6],[12, Lemma 7.1]. Let σ1, . . . , σm be permutations
whose matrices Mσi have no r-grid, and consider the path system representa-
tion (V,E,<) of the product σm ◦ · · · ◦ σ1. Then the adjacency matrix A(E,<)
has no 3r + 2 grid.

Proof. Define the ith column of vertices Xi = {(i, j) | j ∈ [n]} in the path
system representation for i ∈ {0, . . . ,m}. Thus σi is encoded by the edges
between Xi−1 and Xi. The adjacency matrix A(E,<) consists of a double
diagonal of blocks corresponding to the adjacency matrices of Xi−1 against Xi

for each i. The latter is exactly the permutation matrix Mσi
or its transpose,

see Figure 6.9.

MT
σ1

Mσ1

MT
σ2

Mσ2

MT
σ3

Mσ3

..
.

..
.

MT
σm

Mσm

X0

X0

X1

X1

X2

X2

X3

X3

··
·

. . .

Xm

Xm

Figure 6.9: Adjacency matrix of the path system representation of σm ◦· · ·◦σ1.

Consider now an l-grid in this matrix induced by a division R, C.
Claim 6.49. There exists i ∈ [m] such that any part of R intersects one
of Xi−1, Xi, Xi+1.

Proof. Let C1 be the first part of C, and consider i minimal such that C1 is
contained inX0∪· · ·∪Xi. Then there is no edge between C1 andXj for j > i+1,
hence every R ∈ R must intersect X0 ∪ · · · ∪Xi+1. Symmetrically, if Cl is the
last part of C and j is maximal such that Cl ⊆ Xj ∪ · · · ∪ Xm, we find that
any R ∈ R must intersect Xj−1 ∪ · · · ∪Xm. Thus any R ∈ R must intersect
Xj−1∪Xj ∪· · ·∪Xi∪Xi+1. But necessarily i ⩽ j, hence any part R ∈ R must
intersect Xi−1 ∪Xi ∪Xi+1. ■

Claim 6.50. There exists j ∈ [m] such that at least l−4
3 parts of R are in Xj .

Proof. By Claim 6.49, any part of R intersects one of Xi−1, Xi, Xi+1. Exclud-
ing four parts at the borders of the latter, at least l−4 parts of R are contained
in one of Xi−1, Xi, Xi+1. By the pigeonhole principle, at least l−4

3 parts are
contained in the same of these three subsets. ■
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Naturally, Claims 6.49 and 6.50 also hold for columns. Thus we obtain two
sets Xi, Xj which contain at least l−4

3 parts of R and C respectively. This
gives a

(
l−4
3

)
-grid in one of the blocks of the adjacency matrix, which are r-

grid free by hypothesis. It follows that l ⩽ 3r + 1, i.e. the adjacency matrix is
(3r + 2)-grid free.

6.7.2 Subdivisions of sparse graphs. Recall that for any graph G, the
r-subdivision G(r) is obtained by replacing each edge of G by a path of (r+1)
edges. We saw in Fact 2.11 that if G is the clique Kn and r is asymp-
totically smaller than log n, then these graphs have unbounded twin-width.
Furthermore, for any constant r, there is a first-order interpretation Φr such
that Φr(G

(r)) = G (cf. section 4.1). It follows by Theorem 4.16 that if a class C
of graphs has unbounded twin-width, then so do the r-subdivisions of graphs
in C.

Let us thus exclude these two problematic cases: consider a graph G with
twin-width k and no Kt,t as subgraph. Then not only does G(r) have bounded
twin-width, but we will show that for r an appropriate function of k, t, tww(G(r)

is bounded by a universal constant c, independent of k and t.
This combination of bounded twin-width and no Kt,t subgraph is an in-

teresting hypothesis: it was observed in [14] that it is a very natural notion
of sparse graphs with bounded twin-width, with several equivalent characterisa-
tion. The relevant one here is the absence of grids in the adjacency matrix:

Lemma 6.51 [14, Theorem 2.12]. Let G be a graph with twin-width k and no
Kt,t subgraph. Then there is some linear ordering < of the vertices of G for
which the adjacency matrix of G has no t(2k + 4)-grid.

Proof. Choose < to be an ordering compatible with some contraction sequence
of width k. Then by Lemma 6.42, A(G,<) has no (2k+4)-mixed division. Now
suppose for a contradiction that A(G,<) contains a t(2k+4)-grid given by the
division (R, C). Regroup the parts of R, resp. C by groups of t consecutive
parts. This yields a (2k + 4)-division, which by hypothesis contains a non-
mixed cell M . Without loss of generality, assume that the cell M is horizontal.
Further, M was created from t parts of R and t parts of C, hence it contains
a t-grid. In particular, there are at least t non-zero rows in M . But since M
is horizontal, a non-zero row is in fact filled with ‘1’s. These t rows of ‘1’s
give Kt,t as subgraph.

Theorem 6.52 [12, Theorem 7.2]. There is a universal constant c and a func-
tion f such that for any graph G with twin-width k and no Kt,t-subgraph, the
subdivision Gf(k,t) has twin-width at most c.

Proof. Let G = (V,E) be Kt,t-subgraph-free with twin-width k, and, applying
Lemma 6.51, consider a linear ordering<V on V for which the adjacency matrix
is r-grid free for r = t(2k + 4). Fix an arbitrary orientation of the edges of G,
and denote by E⃗ the set of oriented edges: for each uv ∈ E, exactly one of (u, v)
or (v, u) is in E⃗. If e⃗ = (u, v) ∈ E⃗, we denote by s(e⃗) = u its starting point
and by t(e⃗) = v its endpoint.

We define two lexicographic orders on E⃗: <s orders first by starting points
(ordered by <V ), and then by endpoints, while <t orders first by endpoints,
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then by starting points. We consider the permutation σ = (E⃗, <s, <t), and its
matrix Mσ: the columns are E⃗ ordered by <s, while the rows are E⃗ ordered
by <t, and for each e⃗ ∈ E⃗, there is a 1 at the intersection of the row and the
column corresponding to e⃗.
Claim 6.53. The matrix Mσ is 3r-grid free.

Proof. Suppose (R, C) is a 3r-grid: parts of R (resp. C) are intervals of <s

(resp. <t), and for each C ∈ C, R ∈ R, there is some e⃗ ∈ C ∩R.
Consider Ps the partition of E⃗ which groups edges with the same starting

point. Remark that inside each P ∈ Ps, the orders <s and <t coincide, hence
the matrixMσ restricted to the columns in P has no 2-grid. It follows that there
cannot be two distinct parts C,C ′ ∈ C such that C,C ′ ⊆ P as (R, {C,C ′})
would yield a 2-grid using only columns of P . Therefore, any given P ∈ Ps

intersects at most three parts of C. Naturally, the same applies to R and the
partition by endpoints Pt.

We then pick every third part of C and of R, yielding subsets C′ ⊂ C
and R′ ⊂ R such that each part P ∈ Ps (resp. Pt) intersects at most one part
of C′ (resp. R′). The families of intervals C′,R′ have size r, and induce an r-grid
in the matrix Mσ. By projecting on starting points and endpoints respectively,
we obtain C′′ := {s(C) : C ∈ C′} and R′′ := {t(R) : R ∈ R′}, two families
of r disjoint intervals of (V,<V ). For any s(C) ∈ C′′, t(R) ∈ R′′, there is an
edge e⃗ ∈ C ∩ R, hence s(e⃗) ∈ s(C) is adjacent to t(e⃗) ∈ t(R). This proves
that (C′′,R′′) is an r-grid in the adjacency matrix of G, a contradiction. ■

By Claim 6.53 and Theorem 6.6 we obtain a bound on tww(σ) as function
of k, t. Applying Theorem 6.21, this yields a factorisation σ = σm ◦ · · · ◦ σ1,
with m again function of k and t. Consider the path system representa-
tion (X,E,<X) of this factorisation, where U is partitioned into the lay-
ers X0, . . . , Xm as in the previous section. Then (X0, <X) and (Xm, <X) are in
naturally in bijection with (E⃗, <s) and (E⃗, <t) respectively, and for each e⃗ ∈ E⃗,
there is a path joining the copy of e⃗ in X0 to its copy in Xm.

We now add the vertices V of G to this structure, and for each edge e⃗ ∈ E⃗,
we connect the copy of e⃗ in X0 to s(e⃗), and the copy of e⃗ in Xm to t(e⃗).
Thus, for each edge e⃗ ∈ E⃗, a path on m vertices joins s(e⃗) to t(e⃗), hence the
resulting graph is the (m+ 1)-subdivision of G. Furthermore, for each v ∈ V ,
the neighbourhood of v inside X0, resp. Xm, is an interval of <X .

We define an ordering < on the whole structure: it coincides with <V

inside V , with <X inside X, and has V < X. The adjacency matrix of this
graph then consists of

1. the adjacency matrix of the path system representation, which is 11-grid
free using Lemma 6.48, because separable permutations have no 3-grid,
and

2. the adjacency matrix of V against X0 and Xm, which consists of two
increasing sequences (one for X0, one for Xm), and can be seen to be
3-grid free.

Using arguments similar to the ones from the proof of Lemma 6.48, this can
be shown to imply that the adjacency matrix of the (m+ 1)-subdivision of G
is 15-grid free.
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6.7.3 Transducing bounded twin-width classes. Recall that for any
constant r, there is a first-order interpretation Φr such that Φr(G

(r)) = G (cf.
section 4.1). One can think of the subdivision G(r) as some encoding of G,
with the decoding function being the interpretation Φr. With this viewpoint,
Theorem 6.52 can be restated as such: there is a fixed class C of graphs with
bounded twin-width (the relevant subdivisions), such that any class D of graphs
with twin-width at most k and no Kt,t subgraph is interpreted by C (the in-
terpretation being Φr with r function of k, t). We will use Theorem 6.21 to
prove other results of the same shape: a fixed class C transduces any class D
satisfying some conditions.

Let us start with permutations.
Lemma 6.54. There is a fixed class C of structures with bounded twin-width
such that any bounded twin-width class of permutations is interpreted by C.

Proof. The class C consists of all ordered graphs (V,E,<) whose adjacency
matrix A(E,<) has no 11 grid. Since separable permutations have no 3-grids
in their matrices, by Lemma 6.48, the class C contains the path system repres-
entation of any composition of separable permutations.

Now consider a class D of permutations with bounded twin-width, and r the
bound on the length of factorisations of permutations σ ∈ D into separable per-
mutations from Theorem 6.21. Given σ ∈ D, consider some factorisation into
separable permutations σ = σr ◦ · · · ◦σ1, and (V,E,<) ∈ C its path system rep-
resentation. The following first-order interpretation reconstructs the biorder σ
from (V,E,<). As in section 6.7.1, denote by X0 the set of starting points of
paths in (V,E,<). Vertices in X0 can be identified by a first-order formula:
a vertex x is in X0 if and only if x has no neighbour y with y < x. We now
define a second ordering ≺ on X0: given x, y ∈ X0, follow the paths in (V,E)
starting with x and y to find the respective endpoints x′, y′. Then x ≺ y if
and only if x′ < y′. The biorder (X0, <,≺) is σ. Since the paths joining x, y
to x′, y′ consist of exactly r edges, this can be expressed by a first-order formula
depending only on r. This describes a first-order interpretation depending only
on r (hence only on D) which given (V,E,<) ∈ C reconstructs σ ∈ D.

To further extend Lemma 6.54, we will admit the following result of Bonnet,
Nešetřil, Ossona de Mendez, Siebertz, and Thomassé. It is an encoding of
arbitrary binary structures in permutations, which preserves bounded twin-
width, and is decoded by first-order transductions.
Theorem 6.55 [21]. For any class D of binary structures with bounded twin-
width, there is a class of permutations C with bounded twin-width such that C
transduces D.

Note that the class C of encodings in Theorem 6.55 depends on D. Thanks
to Lemma 6.54, we strengthen the result by fixing C.
Theorem 6.56 [12, Theorem 7.3]. There is a fixed class C of permutations
with bounded twin-width such that a class D of binary structures has bounded
twin-width if and only if it is transduced by C.

Proof. The ‘if’ part of the claim is Theorem 4.16: the (yet to be defined) class C
has bounded twin-width, hence so does any transduction thereof.

For the other direction, given the class D, we first apply Theorem 6.55 to
obtain a class C3 of permutations with bounded twin-width, and Φ3 an FO
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transduction such that D ⊆ Φ3(C3). Next we apply Lemma 6.54 to obtain a
class C2 of ordered graphs with bounded twin-width independent of the choice
of D, and Φ2 an FO transduction such that C3 ⊆ Φ2(C2). Finally, we apply
Theorem 6.55 a second time to C2, yielding a class C of permutations with
bounded twin-width and Φ1 an FO transduction such that C2 ⊆ Φ1(C). Again,
C is independent of the choice of D.

We conclude by composing the transductions as C Φ1−→ C2
Φ2−→ C3

Φ3−→ D.





Chapter 7

LIMITATIONS OF TWIN-WIDTH:
SPARSE GRAPHS AND GROUPS

In the previous chapters, we have seen twin-width as particularly relevant
to dense structures such as ordered graphs, permutations, and tournaments.
We will take the opposite point of view and focus exclusively on graphs with
bounded degree.

Corollary 3.39 proved by a counting argument that graphs with bounded
degree can have unbounded twin-width—in fact most of them do. We also
explained that explicitly constructing graphs with bounded degree and un-
bounded twin-width remains an open question. While we do not answer this
question, this chapter aims at giving a better understanding of twin-width in
graphs with bounded degree. We will prove a number of stability results for
twin-width on graphs of bounded degree, which lead us to extend twin-width to
infinite groups through Cayley graphs. We will show that many natural group
constructions preserve finiteness of twin-width, and yield numerous examples
of groups with finite twin-width. Groups however present the same difficulty
as bounded degree graphs: we are unable to explicitly construct groups with
infinite twin-width. Nonetheless, the counting argument for bounded degree
graphs can be pushed through a powerful embedding result of Osajda to obtain
the following.

Theorem 7.1. There is a finitely generated group with infinite twin-width.

Theorem 7.1 gives a counter-example to a conjecture asked in [14]: from a
group with infinite twin-width, one can create a monotone class of graphs which
is small but has infinite twin-width. Thus while classes of bounded twin-width
are small (Theorem 3.37), the converse is false.

All results presented in this chapter come from work of Bonnet, Tessera,
Thomassé, and the author [16].

7.1 Preliminaries: graphs and groups

Let us first define the objects and notions used throughout this chapter.

7.1.1 Cayley graphs. Cayley graphs are the classical way to construct
graphs from groups. Given a group Γ (usually infinite) and a finite gener-
ating set S ⊂ Γ, the graph Cay(Γ, S) has Γ as vertex set, and an edge xy
whenever x ∈ Γ and y = xs for some s ∈ S ∪ S−1: the edges connect elements
of Γ which differ only by a generator. Since S is required to be a generating
subset, the graph Cay(Γ, S) is connected, and since S is finite, the degree is
bounded by 2|S|.

For example:

• For cyclic groups, Cay(Z/nZ, {1}) is the cycle of length n.

121
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· · · · · ·

Figure 7.1: On the left, Cay(Z, {2, 3}); on the right, the infinite 4-regular tree
Cay(F2, {a, b}).

• Cay(Z, {1}) is the bi-infinite path, while Figure 7.1 represents another
Cayley graph of Z for a different generating set.

• More generally, if B is the standard basis of Zn, then Cay(Zn, B) is the
n-dimensional infinite grid.

• Consider the free group F2, that is the group generated by two ele-
ments a, b, in which the only equalities which hold are the ones derived
from group axioms. Then Cay(F2, {a, b}) is the infinite 4-regular tree,
see Figure 7.1.

Indeed, one may check that a cycle in a Cayley graph corresponds to
a non-trivial equality between products of generators, i.e. an equality
which does not follow only from group axioms. Thus Cay(F2, {a, b}) has
no cycle, i.e. is a tree.

7.1.2 Powers of graphs. Cayley graphs are commonly used to extend
graph theoretic notions to groups. For example, Kuske and Lohrey consider
in [70] groups with finite tree-width, meaning groups whose Cayley graphs have
finite tree-width, and show the equivalence with group theoretic properies:
being context-free and being virtually free.

Naturally, one should be careful that a single group can have several distinct
Cayley graphs. In the case of tree-width, this is not an issue: one can prove
that if some Cayley graph of a group Γ has finite tree-width, then all Cayley
graphs of Γ also have finite tree-width. Such a property, satisfied by either all
or none of the Cayley graphs of any given group, is called a group invariant.
By contrast, one might call a group Γ planar if some Cayley graph of Γ is
planar, but this does certainly not imply that all Cayley graphs of Γ are planar:
planarity is not a group invariant. The following notion is helpful to prove that
some property is a group invariant.

The rth power of a graph G, denoted by Gr, is the graph with the same
vertices as G, and such that x ̸= y are adjacent in Gr if and only if they are
at distance at most r in G. We already used the square G2 as an example of
interpretation in section 4.1.
Lemma 7.2. For any group Γ and finite generating subsets S1, S2, there ex-
ists r ∈ N such that Cay(Γ, S1) is a subgraph of (Cay(Γ, S2))

r.
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Proof. Since S2 generates Γ, any s ∈ S1 is equal to some finite product of
elements of S2 ∪ S−1

2 . Furthermore, there is a maximum length r to these
products since S1 is finite. Now consider x ∈ Γ and s ∈ S1 which decom-
poses as s = t1 · · · · · tℓ with ti ∈ S2 ∪ S−1

2 and ℓ ⩽ r. Then in Cay(Γ, S2),
x, xt1, xt1t2, . . . , xt1 . . . tℓ is a path of length ℓ from x to xs. Thus for any
edge xy of Cay(Γ, S1), there is a path of length at most r connecting x to y
in Cay(Γ, S2).

Thus, Cayley graphs of the same group are subgraphs of powers of each
other.

Now, continuing with the example of tree-width: one can show that if G is
a graph with bounded degree and finite tree-width, then Gr also has finite tree-
width for any N. Together with Lemma 7.2, this implies that finite tree-width
is a group invariant. We will show a similar result for twin-width.

7.1.3 Coarse geometry. Powers of graphs are enough to capture the re-
semblance between Cayley graphs of the same group, but it is common to use
the more general and flexible notion of quasi-isometry. The notion is defined
for arbitrary metric spaces, but we will mostly use it in graphs, where the
points of the space are vertices and the distance is the shortest path metric.

Consider two metric spaces X,Y , with the associated metrics dX and dY .
A map f : X → Y is a λ-quasi-isometric embedding if for all x, x′ ∈ X,

λ−1dX(x, x′)− λ ⩽ dY (f(x), f(x′)) ⩽ λdX(x, x′) + λ.

That is, f preserves distances up to affine lower and upper bound. The map f
is a λ-quasi-isometry if in addition it is λ-cobounded, meaning that every y ∈ Y
is at distance at most λ of f(X). For example,

• The identity map on V (G) is an r-quasi-isometry from G to Gr, and also
from Gr to G: indeed the distances differ by a factor of at most r, while
coboundedness is trivial as the map is bijective.

• Consider Zn and Rn as metric spaces with the maximum norm. The
inclusion Zn → Rn is a 1

2 -quasi-isometry: it exactly preserves distances,
and any point of the euclidean space is at distance at most 1

2 of an integer
point. The retraction r : Rn → Zn which rounds coordinates to the
closest integer is a 1-quasi-isometry: the distance d(x, r(x)) is at most 1

2
for any point x, hence distances between pairs of points are distorted by
at most 1.

• Given any graph G, there are two common ways to create a metric space:
one can see V (G) as a discrete space with the shortest path metric (which
is our standard point of view in this chapter), or consider the realisation
of G where each edge is replaced by a copy of the segment [0, 1] connecting
the vertices. The inclusion of V (G) into the realisation of G is a 1

2 -quasi-
isometry, while the retraction onto V (G) mapping to the closest vertex
is a 1-quasi-isometry.

The spaces X and Y are said to be quasi-isometric if there is a λ-quasi-
isometry X → Y for some λ. It is simple to check that quasi-isometries are
closed under composition. Further, given a quasi-isometry f : X → Y , one can



124 CHAPTER 7. SPARSE GRAPHS AND GROUPS

find a coarse inverse g : Y → X, that is a second quasi-isometry such that f ◦g
and g ◦ f are at bounded distance of the identity maps. It follows from these
remarks that being quasi-isometric is an equivalence relation on metric spaces.

Coarse geometry is concerned with metric spaces considered up to quasi-
isometry (or even broader notions of approximate distances). Lemma 7.2 im-
plies that all Cayley graphs of a given group Γ are quasi-isometric through the
identity map on Γ. Thus coarse geometry allows to consider the group Γ as a
metric space up to quasi-isometry, without needing to specify a Cayley graph.

To prove stability under quasi-isometries, we will use the following decom-
position into a few simpler operations, the main one being a power graph.
Given a graph G and a partition P of V (G), the quotient graph G/P has ver-
tex set P, and its edges are all XY such that there is an edge between the
parts X and Y in G.
Lemma 7.3. If f : V (G) → V (H) is a quasi-isometric embedding of graphs of
bounded degree, then there is a partition P of V (G) into parts of bounded size
and a radius r ∈ N such that G/P is a subgraph of Hr.

Proof. Let P =
{
f−1(x) | x ∈ V (H)

}
be the partition into preimages. Since f

is quasi-isometric, parts P ∈ P have bounded diameter, hence bounded size
since G has bounded degree.

If x, y are adjacent in G, then f(x), f(y) are at bounded distance in H, say
at most r, hencef(x), f(y) are either equal or adjacent in Hr. This implies
that G/P is a subgraph of H.

7.2 Twin-width of groups

We will now relate twin-width to the constructions introduced in the previous
section, leading to a notion of finite twin-width for groups.

7.2.1 Sparse twin-width. Let us begin by defining a simplified variant of
twin-width, tailored for graphs of bounded degree.

Recall that the maximum degree in a graph H is denoted by ∆(H). The
sparse twin-width stww(G) is the minimum over all contraction sequences
Pn, . . . ,P1 of maxi ∆(G/Pi). The difference with twin-width is that the dis-
tinction between normal and error edges is forgotten.

For graphs with maximum degree ∆, twin-width and sparse twin-width
differ by at most ∆.
Lemma 7.4. Any graph G satisfies

max(tww(G),∆(G)) ⩽ stww(G) ⩽ tww(G) + ∆(G).

Proof. The left inequality is immediate. The right inequality is obtained by
remarking that for any partition P of V (G), any vertex in Tri(G,P) is incident
to no more than ∆(G) normal edges, and thus the total degree of a part X ∈ P,
which is equal to the degree ofX inG/P, is bounded by ∆(G)+degErr (X).

Notice that sparse twin-width is monotone under taking non-induced sub-
graphs, quite unlike twin-width.
Lemma 7.5. If H is a subgraph of G, then stww(H) ⩽ stww(G).
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Figure 7.2: A graph G with a partition P. In both G2/P and (G/P)2, parts A
and B are adjacent because of the path a1, d, b. In (G/P)2 only, A and C are
adjacent thanks to the path a1, d, e, c, which can ‘jump’ from d to e since they
are in the same part of P.

Proof. If H is a subgraph of G and P is any partition of V (G), then H/P
(where P is identified with its restriction to V (H)) is a subgraph of G/P, and
thus ∆(H/P) ⩽ ∆(G/P). The result easily follows by applying this inequality
to a contraction sequence for G.

7.2.2 Power graphs. In section 4.1, squares of graphs were presented as
a special case of first-order interpretation. More generally, for any r there is a
first-order formula ϕ(x, y) expressing that x, y are at distance at most r, and
thus a first-order interpretation G 7→ Gr. Thus, Theorem 4.16 implies that
tww(Gr) ⩽ fr(tww(G)) for some function fr depending only on r.

Using sparse twin-width, we can now give a simple proof of this special case
in the context of bounded degree graphs.
Lemma 7.6. For any r ∈ N, and any graph G,

stww(Gr) ⩽ stww(G)r.

Proof. We will use the following easily verified inequality (which is not tight,
but is certainly convenient to remember):

(7.1) ∆(Gr) ⩽ (∆(G))r.

Consider P a partition of V (G). Then

(7.2) Gr/P is a subgraph of (G/P)r.

Indeed, for X,Y ∈ P, there is an edge XY in Gr/P if and only if there
are x ∈ X, y ∈ Y and a path of length at most k in G from x to y. When
that is the case, the parts containing the successive vertices of this path yield
a path from X to Y of length at most k in G/P, see Figure 7.2.

Now if Pn, . . . ,P1 is a contraction sequence for G whose quotient graphs
satisfy ∆(G/Pi) ⩽ k, then (G/Pi)

r has degree bounded by kr by (7.1), hence
so does Gr/Pi. Thus Pn, . . . ,P1 now seen as contraction sequence for Gr shows
that stww(Gr) ⩽ kr.

Using Lemmas 7.2 and 7.6, we are almost ready prove that finite twin-
width is a group invariant. There remains only one key issue: Cayley graphs
are usually infinite, and we have not yet defined twin-width for infinite graphs.
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7.2.3 Infinite graphs. Our goal is thus to extend twin-width to infinite
graphs.

Let us sketch one possible definition using infinite contraction sequences.
A contraction sequence for an infinite graph G is a family (Pi)i∈I of partitions
of V (G), indexed by an arbitrary linear order (I,<). The sequence should
progress by coarsening the partitions, i.e. for i < j, Pi refines Pj . Further,
we should ensure that Pi converges to the singletons and trivial partitions on
the respective ends of I, and that it does not skip steps along the way. This
can be specified with a somewhat tedious list of axioms, or simply by requiring
that for any finite X ⊂ V (G), the restriction of (Pi)i∈I to X be a contraction
sequence in the usual sense, after removing steps where the partition does not
change.

With such a definition, we would next prove using classical compactness
arguments that twin-width is continuous in the following sense:

(7.3) tww(G) = sup {tww(H) | H finite induced subgraph of G} .

Characterisation (7.3) turns out to be how we will manipulate twin-width of
infinite graphs. Rather than go through these length, we choose to simply
take (7.3) as the definition of twin-width in infinite graphs. We similarly extend
sparse twin-width to infinite graphs by considering the supremum over finite
subgraphs.

With this new definition, let us show how to generalise some useful lemmas
on twin-width to infinite graphs. This is not meant to be exhaustive: most
of the generalisations to infinite graphs are immediate. Rather, the goal is to
illustrate the difficulties which can appear in these generalisations, and how to
overcome them.

Subgraphs If H is an (infinite) subgraph of G, then any finite subgraph of H
is also a finite subgraph of G. It follows that stww(H) ⩽ stww(G), generalising
Lemma 7.5.

Power graphs Let G be an infinite graph with stww(G) = k. For r ∈ N,
consider H a finite subgraph of Gr with vertex set X. It is not true that H is a
subgraph of (G[X])r: vertices x, y in X might be adjacent in Gr only thanks to
a path which leaves X, in which case x, y are not adjacent in (G[X])r. However
one can consider Y the set of vertices at distance at most r of X in G, which
is finite since G has bounded maximum degree. Now it is simple to check
that H is a subgraph of (G[Y ])r, and stww(G[Y ]) ⩽ k, hence stww(H) ⩽ kr

by Lemma 7.6. This implies stww(Gr) ⩽ kr, generalising Lemma 7.6.

Compatible orders Of all the results presented in this work, the existence of
compatible orders for contraction sequences (Lemma 5.2) stands out for being
particularly simple for finite graphs, but requiring some care in the infinite
case. Indeed this is where we have to pay for the choice of defining twin-
width through finite subgraphs by having to construct some infinite structure:
a compatible order.
Lemma 7.7. For any (possibly infinite) binary structure S there exists a total
ordering < of V (S) such that

tww(S) = tww(S,<).
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To prove Lemma 7.7, we will use a construction of limit ordering.
Let S be some structure (in a very broad sense: in our case, a group, a

graph, a relational structure), and (Si)i∈I a family of substructures of S. The
family (Si)i∈I is directed if for all i, j ∈ I, there exists k ∈ I with Si ∪Sj ⊆ Sk.
The structure S is said to be the direct limit of (Si)i∈I if (Si)i∈I is directed
and S =

⋃
i∈I Si. For instance, an increasing sequence is a very special case

of directed families; a graph is always the direct limit of all its finite induced
subgraphs; and similarly a group is the direct limit of its finitely generated
subgroups.

The following is a folklore lemma, whose proof we omit. It can be proven
using compactness, ultrafilters, or simply Kőnig’s lemma in the countable case.

Lemma 7.8. Let S be the direct limit of (Si)i∈I , and for each i ∈ I let <i be
a total ordering of Si. Then there exists a limit ordering < on S such that for
any finite X ⊂ S, there is some i ∈ I with X ⊆ Si and such that < and <i

coincide inside X.

Proof of Lemma 7.7. Let S be an infinite structure with twin-width k. For
any finite induced substructure T ⊂ S, we have tww(T ) ⩽ k, hence there is
by Lemma 5.2 an ordering <T such that the ordered structure (T,<T ) has
twin-width at most k.

Now S is the direct limit of its finite substructures. Then, by Lemma 7.8, we
obtain a total ordering < of S as limit of the <T . We claim that tww(S,<) ⩽ k.
Indeed, for any finite X ⊂ V (S), there is some substructure T of S contain-
ing X such that < and <T coincide on X. Thus, (S,<) restricted to X is a
substructure of (T,<T ), which has twin-width at most k.

7.2.4 Group invariant. We are finally ready to extend twin-width to
groups. Consider a group Γ, and two finite generating subsets S1, S2. By
Lemma 7.2, Cay(Γ, S2) is a subgraph of some power of Cay(Γ, S1), hence if
the latter has finite sparse twin-width, then so does the former by Lemmas 7.5
and 7.6. Hence finite sparse twin-width (or equivalently finite twin-width, since
the graphs have bounded degree) is a group invariant, and we say that a finitely
generated group has finite twin-width if its Cayley graphs do. For example

1. Finite groups trivially have finite twin-width.

2. The free group F2 admits the 4-regular tree as Cayley graph, hence has
finite twin-width by Fact 2.4.

3. The group Zn admits the n-dimensional grid as Cayley graph, hence has
finite twin-width by Fact 2.6.

4. The cartesian product of graphs G1, G2 is the graph G1×G2 with vertex
set V (G1) × V (G2), and an edge between (x1, x2), (y1, y2) whenever x1
and y1 are adjacent and x2 = y2, or vice versa. It is simple to show that

(7.4) stww(G1 ×G2) < 2(stww(G1) + 1)(stww(G2) + 1).

If Γ1,Γ2 are groups with Cayley graphs Gi = Cay(Γi, Si), then

(7.5) G1 ×G2 = Cay(Γ1 × Γ2, S1 ∪ S2),
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i.e. the cartesian product of Cayley graphs, is a Cayley graph of the
cartesian product of groups. It follows that G1×G2 has finite twin-width
if and only if G1 and G2 do.

5. Finitely generated abelian groups are well-known to be the groups con-
structed by cartesian products when starting from cyclic groups and Z.
These starting groups have finite twin-width by (1) and (3), hence all
finitely generated abelian groups have finite twin-width.

Let us point out that while having finite or infinite twin-width is a group
invariant, we cannot define the ‘twin-width of a group’ as some meaningful
number: the different Cayley graphs of the same group have different twin-
width, and if Γ is an infinite group with finite twin-width, one can create
Cayley graphs with arbitrarily large twin-width for Γ by picking sufficiently
complex generating sets.

7.2.5 Quasi-isometric invariant. The previous proof that twin-width is
a group invariant extends to quasi-isometries.

Lemma 7.9. If G,H are graphs with bounded degree, G has finite sparse twin-
width and H quasi-isometrically embeds into G, then H also has finite sparse
twin-width.

Proof. By Lemma 7.3, H/P is a subgraph of Gr for some partition P into
parts of bounded size and radius r ∈ N. Lemmas 7.5 and 7.6 immediately give
that H/P has finite sparse twin-width. Finally, a simple variant of Lemma 3.16
shows that since H/P has finite sparse twin-width and parts in P have bounded
size, H also has finite sparse twin-width.

Finite twin-width being closed under quasi-isometry, it is natural to com-
pare it to other classical quasi-isometric invariants of groups. Hyperbolicity in
the sense of Gromov [57] is one such notion. By a remarkable result of Buyalo,
Dranishnikov, and Schroeder, hyperbolic groups—and more generally, hyper-
bolic graphs of bounded degree—quasi-isometrically embed into finite cartesian
products of trees of bounded degree [27]. Since trees of bounded degree have
finite twin-width, and cartesian products preserve it, we obtain the following.

Fact 7.10. Gromov-hyperbolic groups have finite twin-width.

7.3 Permutation characterisation

The definition of twin-width of groups through Cayley graphs is natural, and
interesting since it shows that twin-width is a quasi-isometric invariant. It
is however not the most convenient when considering simple algebraic group
constructions such as products, quotients, etc. This section gives a second
characterisation of twin-width of groups through permutations which is more
helpful for this purpose. It also allows to generalise twin-width beyond finitely
generated groups, and leads to a natural strengthening, called uniform twin-
width.



7.3. PERMUTATION CHARACTERISATION 129

7.3.1 Twin-width of group actions. Let Γ be a group acting on a (pos-
sibly infinite) set X by ϕ : Γ → SX , where SX denotes the group of permuta-
tions on X. If we fix a reference ordering < of X, then each permutation ϕ(g),
g ∈ Γ can be encoded by the biorder (X,<,<ϕ(g)) where,

(7.6) x <ϕ(g) y ⇐⇒ ϕ(g)(x) < ϕ(g)(y)

(cf. section 6.1). We say that the action of Γ through ϕ has finite twin-width
with regards to < if the twin-width of the biorder (X,<,<ϕ(g)) is finite for
every g ∈ Γ—but possibly arbitrarily large. This action is said to have finite
twin-width if it has finite twin-width with regards to some ordering of X.
Lemma 7.11. For a finitely generated group Γ, the following are equivalent.

1. Some (equivalently, every) Cayley graph of Γ has finite twin-width.
2. The action of Γ on itself by right product has finite twin-width.

Proof. Suppose that the action of Γ on itself by right product has finite twin-
width, witnessed by some total ordering < of Γ: for any g ∈ Γ, if <g is
the permuted order defined by x <g y if and only if xg < yg, then the
biorder (Γ, <,<g) has finite twin-width.

Define the edge set Eg = {(x, xg) | x ∈ Γ}. Theorem 6.1 implies that since
the biorder (Γ, <,<g) encoding of x 7→ xg has finite twin-width, so does the
ordered bijection (Γ, <,Eg). Consider now an arbitrary finite generating sub-
set S = {s1, . . . , sk}, and assume without loss of generality that S = S−1.
Each (Γ, <,Esi) has finite twin-width, and since they are ordered graphs, we
obtain by Lemma 5.6 that their superposition

(Γ, <,Es1 , . . . , Esk)

also has finite twin-width. It is then simple to verify that replacing all the
relations Es1 , . . . , Esk by their union cannot increase the twin-width. Thus

(Γ, <,Es1 ∪ · · · ∪ Esk)

has finite twin-width. The latter is exactly the Cayley graph Cay(Γ, S) with
the ordering < added. Finally, since twin-width is a group invariant, we obtain
that all Cayley graphs of Γ have finite twin-width.

Conversely, assume that Cay(Γ, S) has finite twin-width for some finite
generating set S = {s1, . . . , sk}. Once again, we write

Cay(Γ, S) = (Γ, Es1 ∪ · · · ∪ Esk).

Since Cay(Γ, S) has bounded degree, it also has finite sparse twin-width. With
sparse twin-width, it is simple to check that splitting the edges into several
relations as

(Γ, Es1 , . . . , Esk)

preserves finite twin-width. Now using Lemma 7.7, there exists a total order-
ing < of Γ such that the ordered structure

(Γ, <,Es1 , . . . , Esk)

has finite twin-width. A fortiori, this implies that each (Γ, <,Es) has finite
twin-width for any s ∈ S. Then by Theorem 6.1, the biorder (Γ, <,<s) also
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has finite twin-width. It only remains to extend this to elements g ∈ Γ outside
the generating set S. Since S is a generating subset, any permutation x 7→ xg,
g ∈ Γ can be written as composition of permutations x 7→ xs with s ∈ S. By
Corollary 5.7, composition of permutation preserves finite twin-width, which
implies the result.

Thus we can take as alternative definition that Γ has finite twin-width if
its self action by right product has finite twin-width. Notice that this new
definition does not refer to a generating set, and thus generalises finite twin-
width to non-finitely generated groups.

7.3.2 Uniform twin-width. In the former characterisation, each biorder
(X,<,<ϕ(g)) is required to have finite twin-width, but possibly arbitrarily
large. A natural strengthening is to ask for a uniform bound. Consider an
action of Γ on X given by ϕ : Γ → SX . Given a total order < on X, the
uniform twin-width of ϕ with regards to < is

utww(X,<)(ϕ) = sup
g∈Γ

tww (X,<,<ϕ(g)).

Then, the uniform twin-width of ϕ, denoted by utww(ϕ), is the minimum
of utww(X,<)(ϕ) over all choices of the ordering < of X. The uniform twin-
width of a group Γ, denoted utww(Γ), is defined as the uniform twin-width of
its self action by right product. Unlike twin-width, the uniform twin-width of
a group or group action is a well defined number, or infinity.

With these new definitions using permutations, we obtain a new import-
ant example of groups with finite twin-width: A right-invariant ordering of a
group Γ is a total ordering < such that for all x, y, z ∈ Γ, x < y implies xz < yz.
If Γ admits such an ordering, it is called (right-)orderable. Groups with finite
twin-width can be seen as a vast generalisation of orderable groups. Indeed,
if < is a right-invariant order on Γ, then the action of any x ∈ Γ by right
product is monotone, hence the corresponding permutation has twin-width 0.
Thus,
Fact 7.12. Any right-orderable group has uniform twin-width 0.

Let us refine the examples of section 7.2. Finitely generated free groups are
well-known to be orderable (see e.g. [86] for a simple proof), thus they have
uniform twin-width 0. Further, it is easy to see that finite cyclic groups with
the natural ordering have uniform twin-width 0.

Now suppose that Γ1,Γ2 are two groups with orderings <1, <2, and con-
sider the Cartesian product Γ1 ×Γ2 with the lexicographic ordering. Then the
permutation corresponding to the right multiplication by (g1, g2) ∈ Γ1×Γ2 can
be obtained by substitution (in the sense of section 6.2.4) from the permuta-
tions x 7→ xgi in Γi for i = 1, 2. By Lemma 6.16, it follows that Cartesian
product preserves uniform twin-width:

(7.7) utww(Γ1 × Γ2) = max(utww(Γ1),utww(Γ2)).

Thus, since cyclic groups and Z have uniform twin-width 0, and Cartesian
product preserves uniform twin-width, we obtain
Fact 7.13. Any finitely generated abelian group has uniform twin-width 0.

The next section will present generalisations of this stability result and
many other examples of groups with small uniform twin-width.
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7.4 Groups with finite twin-width

The goal of this section is to show that twin-width of groups, and especially
uniform twin-width, is preserved by many common group constructions, leading
to several examples of groups with finite twin-width. In this section, unlike the
rest of this chapter, we use G,H etc. to denote groups and not graphs.

Let us start with the trivial remark that twin-width is monotone under
taking subgroups. It is used to prove lower bounds in results of this section.
Lemma 7.14. If G is a group, H ⩽ G is a subgroup, and G has finite twin-
width, then so does H, and utww(H) ⩽ utww(G).

7.4.1 Limits. Defining twin-width of groups through permutations allows
to extend it to infinitely generated groups. For uniform twin-width, we will
show that it is in fact enough to consider finitely generated groups: any group
is the direct limit of finitely generated groups, and these limits preserve uniform
twin-width.
Lemma 7.15. If G is the direct limit of (Gi)i∈I , then

utww(G) = sup
i∈I

utww(Gi).

Proof. For each Gi, let <i be an ordering witnessing that utww(Gi) ⩽ k. By
Lemma 7.8, there is an ordering < of G such that for any finite X ⊂ G, the
orders < and <i coincide on X for some i.

Consider the biorder Bg = (G,<,<g) representing the action of some g ∈ G
on (G,<) by right product. Given a finite substructure of Bg with vertex
set X, define Y = X ∪ (X · g) ∪ {g}. There is some Gi containing Y such
that < and <i coincide on Y . Since <i witnesses that utww(Gi) ⩽ k, the
biorder B′

g = (Gi, <i, <i,g) has twin-width at most k. Furthermore, using
that < and <i coincide on Y , one may check that the induced substruc-
tures Bg[X] and B′

g[X] are equal. Thus tww(Bg[X]) ⩽ k, which implies the
result.

Corollary 7.16. Let G be a group and let H be the collection of finitely gen-
erated subgroups of G. Then

utww(G) = sup
H∈H

utww(H).

Proof. The group G is the direct limit of H.

In section 7.3, we already proved that finitely generated abelian groups have
uniform twin-width 0. Applying Corollary 7.16, we obtain
Fact 7.17. Abelian groups have uniform twin-width 0.

7.4.2 Products and quotients. In sections 7.2 and 7.3, we remarked that
(uniform) twin-width is stable under Cartesian product. We will now give a
significant generalisation of this result.

Let G be a group and H ⩽ G. We write G/H for the right quotient, i.e.
the set of right cosets {Hg | g ∈ G}. Then, G acts on G/H by right product,
and we abusively talk about the (uniform) twin-width of G/H when meaning
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the (uniform) twin-width of this action. When H is a normal subgroup, the
(uniform) twin-width of G/H as group indeed coincides with that of G acting
on G/H, justifying this convention.
Lemma 7.18. For any group G and H ⩽ G, the following holds.

1. utww(G) ⩽ max (utww(H),utww(G/H)).

2. If H has finite uniform twin-width and G/H has finite twin-width, then G
has finite twin-width.

3. If H has finite twin-width and G/H is finite, then G has finite twin-width.

Proof. For x ∈ G, let x̄ = Hx be its equivalence class in G/H. We choose a
transversal T ⊂ G of G/H, meaning that each class of G/H can be uniquely
written as t̄ for some t ∈ T . Consider orderings <H , <G/H of H and G/H
witnessing their twin-width or uniform twin-width. We define an ordering <
of G as follows.

• The order between cosets is defined by

x̄ <G/H ȳ =⇒ x < y.

• For t ∈ T , the order inside the coset t̄ is defined by

∀x, y ∈ t̄, x < y ⇐⇒ xt−1 <H yt−1.

For a ∈ G, let BG
a = (G,<,<a) be the biorder encoding the action of a

on G ordered by <. Similarly, BG/H
a encodes the action of a on G/H ordered

by <G/H , and for b ∈ H, BH
b encodes the action of b acting on H ordered

by <H . Fix some a ∈ G. The crucial remark is the following.

Claim 7.19. Suppose that tww(B
G/H
a ) ⩽ k, and that for any t1, t2 ∈ T ,

for r = t1at
−1
2 ∈ H, we have tww(BH

r ) ⩽ k. Then tww(BG
a ) ⩽ k.

Let us first show that the claim implies the three points of the lemma:

1. is immediate.

2. Given a uniform bound on tww(BH
r ) for all r ∈ H, as well as a bound

on tww(B
G/H
a ), the claim gives a bound on tww(BG

a ). Remark that since
the bound on tww(BH

r ) is used for all appropriate r = t1at
−1
2 ∈ H, the

uniform bound is a priori required.

3. If G/H is finite however, there are only finitely many t1, t2 ∈ T satisfy-
ing t1at

−1
2 ∈ H (for a fixed), hence the uniform bound in the previous

argument is no longer required.

Proof of the Claim. We want to bound the twin-width of BG
a = (G,<,<a).

By construction of <, any coset t̄1 is an interval of <. Furthermore, the im-
age t̄1 · a is also a coset t̄2, hence t̄1 is also an interval of <a. This allows to
construct BG

a as a substitution of permutations along a tree with two levels:
the top level is the permutation (G/H,<,<a) on the cosets, and the bottom
level consists of permutations (t̄1, <,<a) for each coset t̄1. By Lemma 6.16, we
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only need to bound the twin-width of each of the aforementioned substitutions
independently.

The quotient permutation (G/H,<,<a) is exactly BG/H
a , which has twin-

width at most k by assumption. Now consider a coset t̄1 = Ht1, which is
mapped to some t̄2 = Ht2 by right multiplication by a. In this case t1at−1

2 ∈ H,
and we call r = t1at

−1
2 . Now for any x, y ∈ t̄1, we have by definition of <

x < y ⇐⇒ xt−1
1 <H yt−1

1 ,

and since xa, ya ∈ t̄2,

x <a y ⇐⇒ xa < ya

⇐⇒ xat−1
2 <H yat−1

2

⇐⇒ (xt−1
1 )r <H (yt−1

1 )r.

It follows that the map x 7→ xt−1
1 is an isomorphism from (t̄1, <,<a) to BH

r ,
giving the desired bound on tww(t̄1, <,<a). ■

This completes the proof of Lemma 7.18.

Lemma 7.18 is a fairly technical statement, but has natural corollaries.
Corollary 7.20. If G is an extension of Q by H, i.e. H ◁G and Q ∼= G/H

utww(G) ⩽ max(utww(H),utww(Q)).

Corollary 7.21. If G⋊H is any semi-direct product, then

utww(G⋊H) = max(utww(G),utww(H)).

Corollary 7.22. If H ⩽ G is a subgroup of finite index [G : H] = k, then G
has finite twin-width if and only if H does, and

utww(H) ⩽ utww(G) ⩽ max(utww(H), k).

With these results, we can give new examples of groups with finite twin-
width. The well-known class of solvable groups, originating from Galois theory,
is defined inductively as follows.

• The trivial group is solvable.
• If H ◁G, H is solvable and G/H is abelian, then G is solvable.

Using Fact 7.17 and Corollary 7.20, we immediately obtain
Fact 7.23. Solvable groups have uniform twin-width 0.

A particularly important subclass of solvable groups is nilpotent groups
(which we will not define). They are part of the following extremely famous
result of Gromov. If Γ is a group finitely generated by S, its growth function is

g(Γ,S)(r) = |B(1Γ, r)|,

where B(1Γ, r) is the ball of radius r around the identity element in Cay(Γ, S).
This function depends on the choice of S, but it is simple to check that whether
or not it is e.g. a polynomial or exponential function, is independent of S.
Thus one can talk about groups with polynomial or with exponential growth.
Gromov proved that any group G with polynomial growth is virtually nilpo-
tent [56]: there is some nilpotent subgroup H ⩽ G with finite index. From
Fact 7.23 and Corollary 7.22, we thus obtain
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Fact 7.24. Groups of polynomial growth have finite uniform twin-width.

7.4.3 Infinite products and wreath products. Given (Gi)i∈I a family
of groups, their direct product is denoted by

∏
i∈I Gi. Their direct sum

⊕
i∈I Gi

is the subgroup of the direct product consisting of finitely supported tuples,
i.e. the (xi)i∈I with xi ∈ Gi such that all but finitely many xi are the identity
element. When I is finite, the two notions coincide.

Lemma 7.18 of course implies that finite products preserve twin-width and
uniform twin-width. We will show that this generalises to infinite direct sum,
and for uniform twin-width only, to infinite direct products. To prove this, we
first need a corresponding result on permutations: stability under substitutions
with infinite depth.

Consider (I,<I) a well-ordered set of indices, and for each i ∈ I a biorder
Bi = (Xi, <i,≺i). On the product X =

∏
i∈I Xi, we define the orderings <,≺

lexicographically: given x = (xi)i∈I and y = (yi)i∈I in X, we have x < y if
and only if xi <i yi where i is the minimal index on which x and y differ.
The second ordering ≺ is defined similarly. The resulting biorder (X,<,≺) is
called lexicographic product of (Bi)i∈I , denoted

∏
i∈(I,<I)

Bi. Note that the
only reason <I needs to be well-founded is for the lexicographic orderings to
be well-defined.
Lemma 7.25. Let (Bi)i∈I be a family of biorder indexed by a well-ordered
set (I,<I) of indices, and B =

∏
i∈(I,<I)

Bi its lexicographic product. Then
tww(B) = supi∈I tww(Bi).

Proof. Suppose that tww(Bi) ⩽ k for any i, and let us show that tww(B) ⩽ k.
By definition of twin-width for infinite structures, it suffice to show that for
any finite subset of vertices X ⊂ V (B), the substructure B[X] has twin-width
at most k.

Fix such a finite X. For any two x ̸= y ∈ X, consider the minimal index
in I on which they differ, and let J be the collection of all these indices, which
is finite. Consider then the finite product over J

B′ =
∏

i∈(J,<I)

Bi.

It is simple to check that B[X] is isomorphic to an induced substructure of B′,
this isomorphism being the restriction of the natural projection B → B′.

We have thus reduced the problem to a finite product, which is a special
case of substitution in the sense of Lemma 6.16.

Lemma 7.26. Given (Gi)i∈I a family of groups, consider S =
⊕

i∈I Gi their
direct sum, and P =

∏
i∈I Gi their direct product. Then S has finite twin-width

if and only if all Gi do, and

utww(S) = utww(P ) = sup
i∈I

utww(Gi).

Proof. Choose some well founded ordering on I, a total ordering <i of each Gi

witnessing its twin-width, and order S and P lexicographically accordingly.
Let us first consider the claim on uniform twin-width: assume that <i wit-

nesses that utww(Gi) ⩽ k. Given a tuple g = (gi)i∈I ∈ P , the permutation
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x 7→ xg on P is the lexicographic product indexed by (I,<I) of the permuta-
tions x 7→ xgi on Gi. By Lemma 7.25, this lexicographic product preserves
twin-width. It follows that utww(P ) ⩽ k, and a fortiori utww(S) ⩽ k.

For non-uniform twin-width, assume that all Gi have finite twin-width wit-
nessed by <i, and consider g = (gi)i∈I ∈ S. Now all but finitely many of
the permutations x 7→ xgi in Gi are the identity with twin-width 0, and the
remaining ones each have finite twin-width. Thus we obtain some uniform
bound kg (depending on g) on the twin-width of the permutation x 7→ xgi, and
we conclude using Lemma 7.25 once again.

A particularly interesting construction using infinite sums and products is
the following. Given groups G,H, the (complete) wreath product is

G ≀H = GH ⋊H

where GH stands for the direct product
∏

h∈H GH , and H acts by permuting
indices by right product, i.e. for h, h′ ∈ H and x ∈ GH , the action of h is

(x · h)(h′) = x(h′h).

One may also consider the restricted wreath product, with a direct sum replacing
the direct product, and the same action of H.

G ≀r H =

(⊕
h∈H

G

)
⋊H.

It is a subgroup of the complete wreath product. A simple and well-known
example of wreath product is the lamplighter group (Z/2Z) ≀r Z, so called be-
cause it can be thought of as acting on an infinite line of lamps turned on or
off (represented by (Z/2Z)Z), along which a lamplighter moves (the position
being represented by Z) and toggles the lamps.

From Lemma 7.26 and Corollary 7.21, we obtain
Lemma 7.27. utww(G ≀H) = max(utww(G),utww(H)).

Thus for instance, the lamplighter group has uniform twin-width 0.

7.4.4 Group actions. Section 7.3 defined twin-width of arbitrary group
actions, but so far we have only used it in for the self-action by product. We
will now show that an action of a group G with finite twin-width may be used
to show that G itself has finite twin-width.
Lemma 7.28. Let (X,<) be a well-ordered set, and G a group acting faithfully
on X on the right. If this action has finite twin-width with regards to <, then G
has finite twin-width. Furthermore if this action has uniform twin-width k with
regards to <, then utww(G) ⩽ k.

Proof. Consider the set of functions XX ordered lexicographically: for any
f ̸= g ∈ XX , define mf,g = min {x ∈ X | f(x) ̸= g(x)} and

f ≺ g ⇐⇒ f(mf,g) < g(mf,g).

Since G acts faithfully on X, it can be seen as a subset of the permutation
group of X, hence as a subset of XX .

Now given g ∈ G, we consider two permutations:



136 CHAPTER 7. SPARSE GRAPHS AND GROUPS

1. the biorder BX
g = (X,<,<g) corresponding to the action of g on X, and

2. the biorder BXX

g = (XX ,≺,≺g) corresponding to the action of g on XX

by post-composition; which is equivalent to seeing elements of XX as
tuples indexed by X, with g acting coordinate-wise.

Then BXX

g is the lexicographic product of BX
g with itself, indexed by (X,<).

It follows from Lemma 7.25 that

(7.8) tww(BX
g ) = tww(BXX

g ).

This implies the lemma, as the biorder encoding the action of g on G by post-
composition, which is used to define the twin-width of G, is a substructure
of BXX

g .

For example, consider the infinite rooted binary tree T and its group Aut(T )
of automorphisms, i.e. bijections on nodes of T which preserve the root and the
parent relation. The group Aut(T ) is uncountable, but it has some interesting
finitely generated subgroups, notably the Grigorchuk group [53] whose growth
is neither polynomial nor exponential.
Fact 7.29. The group Aut(T ) has uniform twin-width 0.

Proof. Let < be the breadth-first search order on T , which orders first by
increasing depth, then left-to-right at each level. This is a well-order, hence by
Lemma 7.28 it suffices to prove that the action of Aut(T ) on T with regards
to < has uniform twin-width 0.

It is simple to show that for any automorphism σ ∈ Aut(T ), the permuta-
tion induced by σ on each level ℓ of T is separable: it can be constructed by
substitution from the permutation 12 and 21 along the tree T itself, restricted
to nodes at level ℓ or less (cf. section 6.2). It then suffice to put the permuta-
tions on each level one after the other, which still is a separable permutation,
hence has twin-width 0 by Fact 6.15.

7.4.5 Uniform and non-uniform twin-width. Any group with finite
uniform twin-width also has finite twin-width. We conjecture that the converse
does not hold, and propose a candidate counter-example in this section.

Let SZ be the group of permutations on Z, and let Sf
Z be the subgroup

of finitely supported permutations. Furthermore, call T = {x 7→ x+ c | c ∈ Z}
the subgroup of translations. While Sf

Z is not finitely generated, Sf
Z ⋊ T is.

The latter is sometimes called lampshuffler group [52], by analogy with the
lamplighter group.

Now consider the well-order 0, 1,−1, 2,−2, . . . on Z. Swapping of 0 with 1
and translating by 1 are two permutations of Z which generate the lampshuffler
and whose action on Z (with the previous order) clearly has finite twin-width.
Thus, by Corollary 5.7, the action of the lampshuffler on Z has finite twin-
width, and by Lemma 7.28, so does the lampshuffler group itself.

We however conjecture that the lampshuffler has infinite uniform twin-
width, and thus separates uniform and non-uniform twin-width. Indeed the
lampshuffler group contains every finite group: if it had uniform twin-width k,
then every finite group would have uniform twin-width at most k, which would
be surprising.
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This can be pushed further: a group is called elementary amenable if it
can be constructed from finite groups and abelian groups by taking subgroups,
quotients, extensions, and direct limits.
Fact 7.30. The following are equivalent for any k ∈ N.

1. For all finite group G, utww(G) ⩽ k.
2. The lampshuffler group satisfies utww(Sf

Z ⋊ T ) ⩽ k.
3. For all elementary amenable group G, utww(G) ⩽ k.

Proof. The lampshuffler Sf
Z ⋊T is elementary amenable and contains all finite

groups, hence (3) implies (2) which implies (1). Suppose now that all finite
groups have uniform twin-width at most k, and recall that abelian groups have
uniform twin-width 0. It is known that all elementary amenable groups can be
obtained from finite groups and abelian groups using only extensions and direct
limits [29]. It follows by Corollary 7.20 and Lemma 7.15 that all elementary
amenable groups have twin-width at most k.

7.5 Constructing groups with infinite twin-width

The previous sections presented numerous examples of groups with finite twin-
width, and stability results for twin-width of groups. This leaves an obvious
question: are there groups with infinite twin-width? The goal of this section
is to construct one.
Theorem 7.1. There is a finitely generated group with infinite twin-width.

The situation surrounding Theorem 7.1 closely resembles that of graphs
with bounded degree (cf. Corollary 3.39): the construction uses probabilistic
arguments, resulting in a group which can hardly be described in an useful way,
and unfortunately no explicit construction of groups with infinite twin-width
is known.

Nonetheless, the mere existence of a group with infinite twin-width gives
a negative answer to the following question which we asked in [14, Conjec-
ture 2.6]. Theorem 3.37 states any class with bounded twin-width is small
(has at most O(1)n graphs on n vertices). Does the converse hold, i.e. does
any small hereditary1 class have bounded twin-width? Indeed, along with ask-
ing this question, [14] noticed that any group with infinite twin-width would
provide a counter-example: a hereditary class which is small (and even tiny)
but has unbounded twin-width.
Lemma 7.31 [14, Lemma 8.3]. For any Cayley graph G, the class of finite
induced subgraphs of G is tiny.

Proof. Say that G = Cay(Γ, S) for some group Γ and generating set S, and
consider H a finite induced subgraph of G. Take a spanning forest F in H (i.e.
a spanning tree in each component of H), orient its edges arbitrarily, and label
each oriented edge uv of F by the generator s ∈ S ∪ S−1 satisfying u · s = v.
Then F with these labels is enough to reconstruct H. Consider two vertices u, v
in H. If they are in distinct components of F , they are not adjacent in H.

1If the class is not required to be hereditary, any sequence of graphs with increasing size
and twin-width is a trivial counter-example.
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Otherwise, we can find the value u−1v ∈ Γ from the path connecting them
in F , and there is an edge uv in H if and only if u−1v ∈ S ∪ S−1.

Thus for fixed Γ and S, the number of non-isomorphic induced subgraphs
on n vertices in Cay(Γ, S) is bounded by the number of trees on n vertices with
edge labels in S ∪ S−1. It is well-known that there are at most 4n trees on n
vertices up to isomorphism, and the edge labels add at most (2|S|)n choices.

Corollary 7.32. There is a tiny hereditary class of graphs with unbounded
twin-width.

Proof. If G is a Cayley graph of some group with infinite twin-width given by
Theorem 7.1, then the class of finite induced subgraphs of G is hereditary, and
tiny by Lemma 7.31, but has unbounded twin-width.

Let us mention that Bonnet, Duron, Sylvester, Zamaraev, and Zhukovskii
later obtained an entirely different proof of Corollary 7.32 [13], based on a
counting argument from Hatami and Hatami [62].

To prove Theorem 7.1, we embeds an appropriate sequence of graphs with
bounded degree and unbounded twin-width into a Cayley graph. The graphs
are obtained by counting arguments (cf. Theorem 3.37), and the embedding
uses the following remarkable result of Osajda.

In a graph G, the diameter diam(G) is the maximum distance between any
two vertices, and the girth girth(G) is the minimum length of a cycle.
Theorem 7.33 (Osajda [78, Theorem 3.2]). Let (Gn)n∈N be a sequence of
connected graphs satisfying, for some constants A > 0 and ∆ ∈ N,

1. ∆(Gn) ⩽ ∆,
2. girth(Gn) ⩾ girth(Gn−1) + 6, and
3. diam(Gn)/ girth(Gn) ⩽ A.

Then there exists a group Γ finitely generated by S such that every Gn isomet-
rically embeds in Cay(Γ, S).

Osajda goal in proving Theorem 7.33 was to construct groups containing
‘complex’ graphs, namely expanders. We are thus very much using it for its
intended purpose, only complex for us means large twin-width. Its proof pro-
ceeds in two steps:

1. First the graphs Gn are equipped with an edge labelling satisfying the
small cancellation condition: if Gn, Gm contain two paths of length ℓ
with identical labels, then ℓ < 1

6 min(girth(Gn), girth(Gm)). These la-
bellings are obtained by probabilistic arguments, and constitute the core
of Osajda’s proof in [78]. See also [42] for a simplified variant of the proof.

2. The group Γ is then obtained using graphical small cancellation theory :
given the labelled graphs (Gn)n∈N, one can always construct a group Γ by
taking the set S of labels as generators, and whenever a cycle in some Gn

has edges labelled s1, . . . , sk ∈ S, imposing that s1 · · · · · sk = 1. This is
called a (graphical) group presentation. The small cancellation condition
then ensures that each Gn embeds isometrically into Cay(Γ, S), which
is not true in general. This construction, attributed to Gromov [58], is
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based on the well established techniques of small cancellation theory (see
[72, Chapter V]). See [77, 59] for details.

We now focus on constructing graphs with unbounded twin-width satis-
fying the hypotheses of Theorem 7.33. Precisely, we construct a sequence of
graphs (Gn)n∈N satisfying the following2:

1. Each Gn has maximum degree at most 6,
2. diam(Gn) ⩽ 3 log |V (Gn)|,
3. girth(Gn) >

1
4 log |V (Gn)|, and

4. tww(Gn) is unbounded.

For n even, let C1(n) be the class of edge-labeled graphs on vertex set [n]
which are formed by the union of three perfect matchings with labels 1, 2, and 3.
In C1(n), we allow parallel edges (multiple edges with the same endpoints) as
long as they have distinct labels. This class is not small, cf. Lemma 3.38.
Lemma 7.34. For any constant c and any sufficiently large even n,

|C1(n)| > n! · cn.

Fix n ∈ N even and define g = log(n)/4. Call C2(n) the class of graphs
on vertex set [n] with degree at most 6, diameter at most 3 log n and girth at
least g. Let us show that at least half of C1(n) can be obtained from graphs
of C2(n) by editing (adding or removing) at most n7/8 edges and adding la-
bels 1, 2, 3 to edges.
Lemma 7.35. If G is a graph chosen uniformly at random in C1(n), then the
expected number of cycles in G of length at most g is at most 2 · 6g.

Proof. Let C be a potential cycle of length ℓ ⩽ g properly edge-colored 1, 2, 3,
that is, an arbitrary non-repeating sequence v1, . . . , vℓ of vertices in [n] where
each pair vivi+1 (modulo ℓ) is seen as a potential edge and given a label in 1, 2, 3,
so that consecutive edges have distinct labels. Let us bound the probability
that C appears as a cycle with the assigned colors in G.

When choosing a random perfect matching M on n vertices (n even), the
probability that a given pair of vertices belongs to M is n

2 /
(
n
2

)
= 1

n−1 . If
these probabilities were independent, C would appear in G with probability
exactly (n − 1)−ℓ. But the fact that each color class of G forms a matching
introduces a small dependency: Conditioned by the fact that t edges of a
random perfect matching M are already known, the probability that a given
pair of not yet matched vertices appears in M is 1/(n− 2t− 1). Now if these
already known edges are part of C, then t ⩽ ℓ ⩽ g ≪ n, hence this probability
is upper bounded by 2/n. Thus the probability that C appears in G is at
most (2/n)ℓ.

Finally, the number of properly edge colored potential cycles of length ℓ is
at most (3n)ℓ, hence the expected total number of cycles of length at most g
in G is

g∑
ℓ=2

(3n)ℓ · (2/n)ℓ ⩽ 2 · 6g.

2Logarithms are in base 2.
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Lemma 7.36. For any even n, for at least half of the graphs G = (V,E)
in C1(n), there exists G′ = (V,E′) in C2(n) such that the symmetric difference
of edge sets is |E△E′| = O(n7/8).

Proof. By Lemma 7.35 and Markov’s inequality, at least half of the graphs G1

in C1(n) have at most 4 · 6g cycles of length at most g. Let G1 be one such
graph, and choose F ⊂ E(G1) of size at most 4 · 6g intersecting every cycle of
length at most g in G1 (simply choose an edge in each such cycle). Let G2 be
the subgraph of G1 obtained by deleting the edges of F . By construction, G2

has girth more than g. We will now add edges to G2 to ensure its diameter is
at most 3 log n without creating new short cycles.

Let Z be the set of endpoints of edges in F . Thus |Z| ⩽ 8 ·6g. Let N be the
union of balls of radius g/2 centered on vertices of Z. Since G2 has maximum
degree 3, for any fixed vertex x, the ball of radius d around x in G2 contains
at most 3 · 2d vertices. It follows that

|N | ⩽ 8 · 6g · 3 · 2
g
2(7.9)

= 24 · (6
√
2)g(7.10)

= 24 · nlog(6
√
2)/4. (recall g = log n/4)(7.11)

Observe that log(6
√
2)/4 ⩽ 7/8, hence

(7.12) |N | ⩽ 24 · n7/8.

Choose X an inclusion-wise maximal subset of V (G2) such that vertices in X
pairwise have distance at least log n inG2. DefineX1 = X∩N , andX2 = X\N .

Let v ∈ X2, and let Bv be the closed ball of radius g/2 in G2. Since v is
at distance more than g/2 from Z, no edge of G1 was removed inside this ball,
hence all vertices of Bv have degree 3. Furthermore, since G2 has girth more
than g, G2 restricted to Bv is a tree, except possibly for edges between vertices
at distance g/2 from v which we may ignore. This implies

(7.13) |Bv| ⩾ 2g/2 = n1/8.

Finally, any distinct v, v′ ∈ X2 are at distance at least log n, which is more
than g. Thus the balls Bv and Bv′ are disjoint. It follows from (7.13) that

(7.14) |X2| ⩽
|V (G2)|
n1/8

= n7/8.

Using that X = X1 ∪X2, X1 ⊂ N , and (7.12) and (7.14), we obtain

(7.15) |X| = O(n7/8).

Construct G3 by adding to G2 a balanced ternary tree T with vertex set X.
Thus, vertices in X are pairwise at distance at most log n in G3. Furthermore,
by maximality of X, all vertices of G2 are at distance at most log n of X. It
follows that the diameter of G3 is at most 3 log n. Finally, G3 still has girth
at least g, because T only connects vertices of X, which are far apart in G2.
Clearly the degree of vertices in G3 does not exceed 6. Thus G3 ∈ C2(n).

To summarize, we transform G1 into G3 by deleting |F | ⩽ 4 · 6g edges, and
then adding |X| edges, which gives O(n7/8) edge editions in total.
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Lemma 7.37. The class C2 is not small, that is for any constant c and any
sufficiently large even n,

|C2(n)| ⩾ n! · cn.

Proof. Fix c, consider n even sufficiently large, and suppose for a contradiction
that |C2(n)| ⩽ n! · cn. For any graph G on n vertices, the number of graphs
which can be obtained from G by editing up to n7/8 edges is at most

(7.16)
(
n2

n7/8

)
⩽ n2n

7/8

⩽ 2n, asymptotically.

Hence the total number of cubic graphs with edges labeled 1,2,3 obtained
by n7/8 editions from any graph in C2(n) is asymptotically at most

(7.17) 2n · 33n/2 · n! · cn ⩽ n! · cn2

for some constant c2. By Lemma 7.36, the cardinality of C1(n) is at most
double the previous value, a contradiction of Lemma 7.34.

Theorem 7.1. There is a finitely generated group with infinite twin-width.

Proof. By Lemma 7.37 and Theorem 3.37, for any k ∈ N and for any suffi-
ciently large nk, C2(nk) contains graphs of twin-width more than k. Thus,
one can construct a sequence (Gk)k∈N of graphs such that tww(Gk) > k
and Gk ∈ C2(nk), for any sequence (nk)k∈N of even integers growing suffi-
ciently fast. Since girth(Gk) ⩾ log(nk)/4, an appropriate choice of nk ensures
that girth(Gk) ⩾ girth(Gk−1) + 6. Then (Gk)k∈N satisfies the hypotheses of
Theorem 7.33, hence there exists a group Γ finitely generated by S such that
every Gk isometrically embeds in Cay(Γ, S). This group has infinite twin-
width.
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GLOSSARY

Symbols

[n] the interval of integers {1, . . . , n} ,
∆(G) maximum degree of vertices in G
G[X] see induced subgraph
Kn see clique
Ks,t see biclique
χ(G) see chromatic number
ck see Marcus–Tardos constant
ω(G) see clique number

B

biclique (Ks,t) The graph with two sets X,Y of r and s vertices respectively,
with no edge inside X nor Y , and all edges between them. p. 4

binary Said of a relational signature or structure whose relations are all of
arity 2. p. 66

biorder Relational structure (V,<1, <2) consisting of two total orderings of
the same vertex set V . Represents a permutation. p. 70, 89

block (matrix) see division

C

Cayley graph For a group Γ and a finite generating subset S ⊂ Γ, the
graph Cay(Γ, S) with vertices Γ, and edges xy whenever y = xs for
some x ∈ Γ and s ∈ S. p. 121

cell (matrix) see division
χ-bounded A hereditary class C of graphs satisfying χ(G) ⩽ f(ω(G)) for some

function f and all G ∈ C. p. 22
chromatic number (χ(G)) Minimum number k of colours needed to prop-

erly colour G, i.e. such that there is a map λ : V (G) → [k] satisfy-
ing λ(x) ̸= λ(y) whenever xy ∈ E(G). p. 22

clique (Kn) The graph with n vertices and all edges between them. p. 4
clique number (ω(G)) Maximum size of a clique contained in G. p. 22
coarsening see refinement
cograph Graph constructed by disjoint and complete unions starting from

single vertices. Equivalently, graph without P4 as induced subgraph.
p. 18

compatible (order)
with a contraction sequence Pn, . . . ,P1: a linear ordering < such that

all parts of all Pi are intervals on <. p. 44
with a rooted tree T : a linear ordering < of the leaves of T obtained as

left-to-right ordering for some plane embedding of T . An ordering <
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is compatible with T if and only if for any node t ∈ T , the set of leaves
descendant of t is an interval of <. p. 44, 97

contraction sequence Sequence of partitions of the vertices of a graph, start-
ing with the partition into singleton, merging two parts at each step,
and ending with a single part. Also, the sequence of quotient trigraphs
defined by these partitions. p. 12, 14, see also trigraph

ε-versatile Process for creating a contraction sequence (usually with a
fixed bound on the width) in which, when considering a partition P,
one can arbitrarily forbid use of ε|P| of the parts, and still find a
contraction to continue the sequence from P. p. 47

error rank Maximum error rank over all parts at all steps of the contrac-
tion sequence. p. 39

width Maximum error degree over all vertices in all quotient trigraphs
the contraction sequence. p. 12

D

degenerate G is k-degenerate if in G and all of its subgraphs, there is a vertex
of degree at most k. Equivalently, there is an ordering < of V (G)
such that each x ∈ V (G) has at most k neighbours placed before x
in <. p. 26, 105

division Pair of partitions (R, C) of the rows and columns respectively of a
matrix into intervals. p. 33

block (of rows, resp. columns) One of the interval R ∈ R (resp. C ∈ C) of
the partitions defining the division. p. 33

cell The submatrix defined by the intersection of blocks R ∈ R, C ∈ C.
p. 33

d-division Division with d blocks of rows and d blocks of columns. p. 33
rank-k d-division d-division of a matrix in which every cell has rank at

least k. p. 39
rank-k division Short for rank-k k-division. p. 39

E

error Two sets of vertices X,Y between which there is both an edge and a
non-edge. When X,Y are not in error (there are either all possible
edges between them, or none of them), they are homogeneous. p. 11

for binary relations Subsets of vertices X,Y ⊂ V are in error w.r.t. a
binary relation R ⊂ V 2 if there are pairs (x1, y1), (x2, y2) ∈ X×Y such
that (x1, y1) ∈ R and (x2, y2) ̸∈ R, or vice versa up to swapping X
and Y . Otherwise, they are homogeneous: either all or none of the
pairs (x, y) ∈ X × Y are in R, and similarly either or all of the pairs
in Y ×X are in R. p. 66

error degree For a vertex x in a trigraph, the number of vertices connected
to x by an error edge. For a part X in a partition P of the vertices of
a graph G, the error degree of X in the quotient trigraph Tri(G,P),
i.e. the number of parts of P in error with X. p. 12, see also trigraph

error graph For a graph G and a partition P of V (G), the graph with ver-
tices P in which parts are adjacent when they are in error. p. 29
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error rank (erkP(P )) For a part P ∈ P of a partition of the vertices of a
graph G = (V,E), the smallest k satisfying: there is a subset Q ⊂ P
of k such that rk(P ;V \ (∪Q ∪ P )) ⩽ k. p. 39

F

first-order logic
formula (over graphs) Logical formula constructed from quantification

on vertices, boolean combinators, and adjacency and equality tests
on vertices. p. 57

closed formula Formula without free variables. Syn. sentence. p. 61
independent A class C of relational structures which admits a first-order

transduction Φ such that Φ(C) contains all graphs. A class which is
not independent is called dependent or NIP (for Non Independence
Property). p. 59, 64

interpretation A map Φ of relational structures specified using first-
order logic: for each relational symbol E of the image, a formula ϕE
defines E(Φ(S)) by

(x1, . . . , xk) ∈ E(Φ(S)) ⇐⇒ S |= ϕE(x1, . . . , xk).

An additional formula ϕV may be used to restrict the domain as
x ∈ V (Φ(S)) if and only if S |= ϕV (x). p. 59, 62

model checking problem Algorithmic problem of testing if a given
graph G (or relational structure) satisfies a given formula ϕ. p. 58

transduction Generalisation of interpretations with a non-deterministic
colouring step: The input structure S is augmented by a fixed number
of unary predicates U1, . . . , Ur, with Ui(S) chosen arbitrarily and non-
deterministically, before applying an interpretation. p. 63

Fixed parameter tractable (FPT) Algorithm with running time f(k) · nc,
where f is any computable function, c is constant, n is the input size,
and k is a parameter depending on the algorithmic problem. Usually,
the parameter k is either the size of the desired solution, or some
complexity measure (e.g. treewidth). p. 2

G

grid Division of a 0–1 matrix in which every cell contains a ‘1’. p. 33
k-grid Grid consisting of k blocks of rows and k blocks of columns. p. 33

grid rank Maximum k for which the matrix admits a rank-k division. p. 39

H

hereditary A class of graphs (or relational structures) closed under induced
subgraphs. p. 4

homogeneous see error

I

independent set Set of pairwise non-adjacent vertices. Syn. stable set. p. 1
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problem Algorithmic problem of finding an independent set in a graph,
either of maximum size (maximum independent set problem, MIS) or
of a prescribed size k (k-independent set problem). p. 1

induced subgraph (G[X]) In G, the graph obtained by keeping only the
subset of vertices X ⊂ V (G), and all edges of G with endpoints in X.
p. 4

L

laminar family Family F of non-empty sets, any two of which are either
disjoint or contained in one another. Implicitly describes a forest
with nodes F , where X is an ancestor of Y if and only if Y ⊂ X.
p. 17

M

Marcus–Tardos constant (ck) Smallest integer such that any n× n matrix
with at least ck · n entries ‘1’s contains a k-grid. The Marcus–Tardos
theorem proves its existence [73], Fox proved ck ⩽ 3k28k [44]. p. 36

O

ordered graph Ordered structure (V,<,E) where (V,E) is a graph and < is
a total ordering of V . p. 70

ordered structure Relational structure S containing a relation <S which is
a total ordering of the vertices. p. 70

P

pattern (permutation) τ ∈ Sk is a pattern of σ ∈ Sn if there are increasing
maps f, g : [k] → [n] satisfying f ◦ τ = σ ◦ g. When represented as
biorders, a pattern corresponds to an induced substructure. When
represented with permutations matrices, a pattern corresponds to a
submatrix. p. 94

permutation matrix (Mσ) For σ ∈ Sn, the n × n matrix with a ‘1’ at the
intersection of column i and row σ(i) for any i ∈ [n]. p. 82, 90

power graph (Gk) The graph with the same vertices as G, and an edge xy
whenever x and y are at distance at most k in G. p. 122

Q

quasi-isometric embedding A map f : X → Y between metric spaces which
preserves distances up to some affine upper and lower bounds. p. 123

quasi-isometry A quasi-isometric embedding f : X → Y which furthermore
is cobounded : all points of Y are at bounded distance of f(X). p. 123

quotient graph (G/P) For a graph G and a partition P of V (G), the graph
with vertices P and an edge XY whenever there is an edge between
parts X and Y in G. p. 124

R

rank, grid see grid
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rank-k division see division
refinement P ′ is a refinement of P, and P a coarsening of P ′, if they are parti-

tions of the same set, and each part X ∈ P ′ is a subset of some Y ∈ P.
Equivalently, each part of P the union of some parts of P ′. p. 17

k-refinement P ′ is a k-refinement of P, and P a k-coarsening of P ′, if
each part P ∈ P is equal to the union of at most k parts of P ′. p. 41

relational
signature Set {R1, . . . , Rk} of relation symbols, each of which is given an

arity ar(Ri) ∈ N. p. 59
structure For a signature Σ, a Σ-structure S consists of a set V (S) of

vertices, also called domain or universe, and for each symbol R ∈ Σ of
arity r = ar(R), a valuation of the symbol as a relation R(S) ⊆ V (S)r.
p. 59

S

separable permutation Permutation constructed by direct and skew sums.
Equivalently, permutation avoiding the patterns 2413 and 3142. p. 95

small A class of graphs (or relational structures) containing at most cn · n!
distinct graphs with vertices {1, . . . , n}, for some constant c and any n.
p. 54, , see also tiny

sparse twin-width (stww(G)) For a graph G the minimum over all contrac-
tion sequences Pn, . . . ,P1 of maxi ∆(G/Pi). p. 124

stable set see independent set
subgraph In G, a graph obtained by removing any subset of edges and of

vertices (together with their incident edges). p. 4, see also induced
subgraph

T

tiny A class of graphs (or relational structures) containing at most cn graphs
on n vertices up to isomorphism, for some constant c and any n.
Implies small. p. 54

tournament Directed graph T = (V,A) where for any vertices x ̸= y, exactly
one of the directed edges x→ y or y → x is in A. p. 70

trigraph Structure consisting of a set V of vertices, with between two distinct
vertices either no edge, a normal edge, or an error (or red) edge. p. 11

quotient (Tri(G,P)) For a graph G and a partition P of V (G), the
trigraph Tri(G,P) with vertices P, in which parts are connected by
an edge when they are fully connected, no edge when they are fully
disconnected, and an error edge otherwise, i.e. when they are non-
homogeneous. p. 11

twin-width (tww(G)) Minimum width of a contraction sequence. p. 12
twins Two vertices with equal neighourhoods (excluding themselves). p. 13

k-near twins Two vertices with neighbourhoods differing on at most k
vertices (excluding themselves). p. 13
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adjacency labelling, 53

balanced partition, 50

clique-width, 7, 19, 93
coarse geometry, 123
cograph, 3, 18
colouring, 22, 24, 26, 105
contraction sequence, 12, 15, 39,

42, 51, 124
contraction tree, 17, 44
cubic graph, 55
cubic graphs, 139

dominating set, 50, 57
dynamic programming, 28

enumeration, 54, 80, 98, 139
see also small class

first-order logic, 57
interpretation, 59, 62, 67, 75,

80, 85, 118, 122
model checking, 58, 59, 61,

65, 66, 79, 84, 87
NIP, 59, 64, 67, 79, 84, 87

FPT algorithm, 2, 28, 58, 61, 65,
66, 79, 84, 87, 95

graph encoding, 52
grid (graph), 16
grid (matrix), 33, 37, 82, 92, 94,

110
rank, 39, 44, 48, 71, 78

independent set problem, 1, 28

linear programming, 50

Marcus–Tardos, 35–37, 46
Kt-minor free graphs, 5, 38, 43, 54

ordered graph, 60, 70, 71, 82

permutation, 54, 60, 70, 73, 80, 85,
89, 129, 134, 136

matrix, 82, 83, 90, 92, 94, 114
pattern, 94, 95, 98
separable, 95, 98, 110, 136

planar graph, 3, 42, 54
power graph, 122, 125

quasi-isometry, 123, 128

relational structure, 59, 66
rook graph, 20

small class, 54, 79, 80, 84, 87, 94,
98, 137

stable set, see independent set
subdivision (graph), 20, 59, 63, 116

tournament, 70, 73, 85
tree, 15
triangle-free, 22, 24
twin-width

approximation of, 30, 72, 74
of groups, 127, 128
of infinite graphs, 126
sparse twin-width, 124
versatile, 47

twins, 13
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